Search for blocks/addresses/...

Proofgold Asset

asset id
6500287e76746c46eff9abd7d117b1b17d97b5355d8c187de46db852a2584934
asset hash
c1b83a48dc879d0c5e68d9b9fa26cd77e4bfcd2e9bb0c859e174c9c1089d7d51
bday / block
5784
tx
8f02a..
preasset
doc published by Pr6Pc..
Param apap : ιιι
Definition field0RealsStruct_carrier := λ x0 . ap x0 0
Definition decode_bdecode_b := λ x0 x1 . ap (ap x0 x1)
Param ordsuccordsucc : ιι
Definition field1bRealsStruct_plus := λ x0 . decode_b (ap x0 1)
Definition field2bRealsStruct_mult := λ x0 . decode_b (ap x0 2)
Param decode_rdecode_r : ιιιο
Definition RealsStruct_leqRealsStruct_leq := λ x0 . decode_r (ap x0 3)
Definition field4RealsStruct_zero := λ x0 . ap x0 4
Definition RealsStruct_oneRealsStruct_one := λ x0 . ap x0 5
Param pack_b_b_e_epack_b_b_e_e : ι(ιιι) → (ιιι) → ιιι
Definition Field_of_RealsStructField_of_RealsStruct := λ x0 . pack_b_b_e_e (field0 x0) (field1b x0) (field2b x0) (field4 x0) (RealsStruct_one x0)
Param If_iIf_i : οιιι
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Definition Field_minusField_minus := λ x0 x1 . If_i (x1ap x0 0) (explicit_Field_minus (ap x0 0) (ap x0 3) (ap x0 4) (decode_b (ap x0 1)) (decode_b (ap x0 2)) x1) 0
Known pack_b_b_e_e_0_eq2pack_b_b_e_e_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . x0 = ap (pack_b_b_e_e x0 x1 x2 x3 x4) 0
Theorem Field_of_RealsStruct_0Field_of_RealsStruct_0 : ∀ x0 . ap (Field_of_RealsStruct x0) 0 = field0 x0 (proof)
Known pack_b_b_e_e_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 x5 . x5x0∀ x6 . x6x0x1 x5 x6 = decode_b (ap (pack_b_b_e_e x0 x1 x2 x3 x4) 1) x5 x6
Theorem Field_of_RealsStruct_1Field_of_RealsStruct_1 : ∀ x0 x1 . x1field0 x0∀ x2 . x2field0 x0ap (ap (ap (Field_of_RealsStruct x0) 1) x1) x2 = field1b x0 x1 x2 (proof)
Known pack_b_b_e_e_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 x5 . x5x0∀ x6 . x6x0x2 x5 x6 = decode_b (ap (pack_b_b_e_e x0 x1 x2 x3 x4) 2) x5 x6
Theorem Field_of_RealsStruct_2Field_of_RealsStruct_2 : ∀ x0 x1 . x1field0 x0∀ x2 . x2field0 x0ap (ap (ap (Field_of_RealsStruct x0) 2) x1) x2 = field2b x0 x1 x2 (proof)
Known pack_b_b_e_e_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . x3 = ap (pack_b_b_e_e x0 x1 x2 x3 x4) 3
Theorem Field_of_RealsStruct_3Field_of_RealsStruct_3 : ∀ x0 . ap (Field_of_RealsStruct x0) 3 = field4 x0 (proof)
Known pack_b_b_e_e_4_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . x4 = ap (pack_b_b_e_e x0 x1 x2 x3 x4) 4
Theorem Field_of_RealsStruct_4Field_of_RealsStruct_4 : ∀ x0 . ap (Field_of_RealsStruct x0) 4 = RealsStruct_one x0 (proof)
Param struct_b_b_e_estruct_b_b_e_e : ιο
Known pack_struct_b_b_e_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)∀ x3 . x3x0∀ x4 . x4x0struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Known unpack_b_b_e_e_o_equnpack_b_b_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7x1∀ x8 . x8x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . x8x1∀ x9 . x9x1x3 x8 x9 = x7 x8 x9)x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)unpack_b_b_e_e_o (pack_b_b_e_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition e08de.. := λ x0 x1 x2 x3 . and (RealsStruct_leq x1 x2 x3) (x2 = x3∀ x4 : ο . x4)
Param struct_b_b_r_e_estruct_b_b_r_e_e : ιο
Param unpack_b_b_r_e_e_ounpack_b_b_r_e_e_o : ι(ι(ιιι) → (ιιι) → (ιιο) → ιιο) → ο
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition RealsStructRealsStruct := λ x0 . and (struct_b_b_r_e_e x0) (unpack_b_b_r_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 : ι → ι → ο . λ x5 x6 . explicit_Reals x1 x5 x6 x2 x3 x4))
Param pack_b_b_r_e_epack_b_b_r_e_e : ι(ιιι) → (ιιι) → (ιιο) → ιιι
Known struct_b_b_r_e_e_etastruct_b_b_r_e_e_eta : ∀ x0 . struct_b_b_r_e_e x0x0 = pack_b_b_r_e_e (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_r (ap x0 3)) (ap x0 4) (ap x0 5)
Theorem RealsStruct_etaRealsStruct_eta : ∀ x0 . RealsStruct x0x0 = pack_b_b_r_e_e (field0 x0) (field1b x0) (field2b x0) (RealsStruct_leq x0) (field4 x0) (RealsStruct_one x0) (proof)
Known RealsStruct_unpack_eqRealsStruct_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . unpack_b_b_r_e_e_o (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5) (λ x7 . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ο . λ x11 x12 . explicit_Reals x7 x11 x12 x8 x9 x10) = explicit_Reals x0 x4 x5 x1 x2 x3
Theorem RealsStruct_explicit_RealsRealsStruct_explicit_Reals : ∀ x0 . RealsStruct x0explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0) (proof)
Known pack_struct_b_b_r_e_e_E4pack_struct_b_b_r_e_e_E4 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)x4x0
Theorem RealsStruct_zero_InRealsStruct_zero_In : ∀ x0 . RealsStruct x0field4 x0field0 x0 (proof)
Known pack_struct_b_b_r_e_e_E5pack_struct_b_b_r_e_e_E5 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)x5x0
Theorem RealsStruct_one_InRealsStruct_one_In : ∀ x0 . RealsStruct x0RealsStruct_one x0field0 x0 (proof)
Known pack_struct_b_b_r_e_e_E1pack_struct_b_b_r_e_e_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)∀ x6 . x6x0∀ x7 . x7x0x1 x6 x7x0
Theorem RealsStruct_plus_closRealsStruct_plus_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0 (proof)
Known pack_struct_b_b_r_e_e_E2pack_struct_b_b_r_e_e_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x0
Theorem RealsStruct_mult_closRealsStruct_mult_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2field0 x0 (proof)
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7∀ x8 : ο . x8)
Param SepSep : ι(ιο) → ι
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param setexpsetexp : ιιι
Known explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∀ x9 : ο . (∀ x10 . and (x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7))x9)x9)(∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x8 . x8setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∀ x9 : ο . (∀ x10 . and (x10x0) (∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11)))x9)x9)x6)explicit_Reals x0 x1 x2 x3 x4 x5x6
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param iffiff : οοο
Param oror : οοο
Known explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 x8 x9x5 x7 x9)(∀ x7 . x7x0∀ x8 . x8x0iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8))(∀ x7 . x7x0∀ x8 . x8x0or (x5 x7 x8) (x5 x8 x7))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 (x3 x7 x9) (x3 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0x5 x1 x7x5 x1 x8x5 x1 (x4 x7 x8))x6)explicit_OrderedField x0 x1 x2 x3 x4 x5x6
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Theorem RealsStruct_plus_assocRealsStruct_plus_assoc : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 (field1b x0 x2 x3) = field1b x0 (field1b x0 x1 x2) x3 (proof)
Theorem RealsStruct_plus_comRealsStruct_plus_com : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2 = field1b x0 x2 x1 (proof)
Theorem RealsStruct_zero_LRealsStruct_zero_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field1b x0 (field4 x0) x1 = x1 (proof)
Theorem 1c11b.. : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 : ο . (∀ x3 . and (x3field0 x0) (field1b x0 x1 x3 = field4 x0)x2)x2 (proof)
Theorem RealsStruct_mult_assocRealsStruct_mult_assoc : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field2b x0 x2 x3) = field2b x0 (field2b x0 x1 x2) x3 (proof)
Theorem RealsStruct_mult_comRealsStruct_mult_com : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field2b x0 x2 x1 (proof)
Theorem RealsStruct_one_neq_zeroRealsStruct_one_neq_zero : ∀ x0 . RealsStruct x0RealsStruct_one x0 = field4 x0∀ x1 : ο . x1 (proof)
Theorem RealsStruct_one_LRealsStruct_one_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 (RealsStruct_one x0) x1 = x1 (proof)
Theorem c2c76.. : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0(x1 = field4 x0∀ x2 : ο . x2)∀ x2 : ο . (∀ x3 . and (x3field0 x0) (field2b x0 x1 x3 = RealsStruct_one x0)x2)x2 (proof)
Theorem RealsStruct_distr_LRealsStruct_distr_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field1b x0 x2 x3) = field1b x0 (field2b x0 x1 x2) (field2b x0 x1 x3) (proof)
Known explicit_OrderedField_leq_reflexplicit_OrderedField_leq_refl : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0x5 x6 x6
Theorem RealsStruct_leq_reflRealsStruct_leq_refl : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_leq x0 x1 x1 (proof)
Known explicit_OrderedField_leq_antisymexplicit_OrderedField_leq_antisym : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0∀ x7 . x7x0x5 x6 x7x5 x7 x6x6 = x7
Theorem RealsStruct_leq_antisymRealsStruct_leq_antisym : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 x2 x1x1 = x2 (proof)
Theorem RealsStruct_leq_traRealsStruct_leq_tra : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 x2 x3RealsStruct_leq x0 x1 x3 (proof)
Theorem RealsStruct_leq_plusRealsStruct_leq_plus : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 (field1b x0 x1 x3) (field1b x0 x2 x3) (proof)
Theorem 97dc1.. : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2RealsStruct_leq x0 (field4 x0) (field2b x0 x1 x2) (proof)
Definition RealsStruct_NRealsStruct_N := λ x0 . Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))
Theorem 76b2d.. : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0e08de.. x0 x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2∀ x3 : ο . (∀ x4 . and (x4RealsStruct_N x0) (RealsStruct_leq x0 x2 (field2b x0 x4 x1))x3)x3 (proof)
Theorem RealsStruct_ComplRealsStruct_Compl : ∀ x0 . RealsStruct x0∀ x1 . x1setexp (field0 x0) (RealsStruct_N x0)∀ x2 . x2setexp (field0 x0) (RealsStruct_N x0)(∀ x3 . x3RealsStruct_N x0and (and (RealsStruct_leq x0 (ap x1 x3) (ap x2 x3)) (RealsStruct_leq x0 (ap x1 x3) (ap x1 (field1b x0 x3 (RealsStruct_one x0))))) (RealsStruct_leq x0 (ap x2 (field1b x0 x3 (RealsStruct_one x0))) (ap x2 x3)))∀ x3 : ο . (∀ x4 . and (x4field0 x0) (∀ x5 . x5RealsStruct_N x0and (RealsStruct_leq x0 (ap x1 x5) x4) (RealsStruct_leq x0 x4 (ap x2 x5)))x3)x3 (proof)
Theorem explicit_Field_of_RealsStructexplicit_Field_of_RealsStruct : ∀ x0 . RealsStruct x0explicit_Field (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (proof)
Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Known iff_symiff_sym : ∀ x0 x1 : ο . iff x0 x1iff x1 x0
Known explicit_Field_repindepexplicit_Field_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)iff (explicit_Field x0 x1 x2 x3 x4) (explicit_Field x0 x1 x2 x5 x6)
Theorem Field_Field_of_RealsStructField_Field_of_RealsStruct : ∀ x0 . RealsStruct x0Field (Field_of_RealsStruct x0) (proof)