Search for blocks/addresses/...
Proofgold Asset
asset id
0c6a0765889f8a8efd59551a74298b0ebc0121c62bd992f74bed0d7dc61205c3
asset hash
6585deb5a912856c3e9776f19b6561d92cbf19552a1ca9e00171d9b70e65d8f4
bday / block
11715
tx
19ec9..
preasset
doc published by
PrGVS..
Known
bfa6d..
Loop_with_defs_E
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
Loop
x0
x1
x2
x3
x4
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x5
x15
x16
=
x2
(
x1
x16
x15
)
(
x1
x15
x16
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x6
x15
x16
x17
=
x2
(
x1
x15
(
x1
x16
x17
)
)
(
x1
(
x1
x15
x16
)
x17
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
and
(
and
(
and
(
and
(
x7
x15
x16
=
x2
x15
(
x1
x16
x15
)
)
(
x10
x15
x16
=
x1
x15
(
x1
x16
(
x2
x15
x4
)
)
)
)
(
x11
x15
x16
=
x1
(
x1
(
x3
x4
x15
)
x16
)
x15
)
)
(
x12
x15
x16
=
x1
(
x2
x15
x16
)
(
x2
(
x2
x15
x4
)
x4
)
)
)
(
x13
x15
x16
=
x1
(
x3
x4
(
x3
x4
x15
)
)
(
x3
x16
x15
)
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
and
(
x8
x15
x16
x17
=
x2
(
x1
x16
x15
)
(
x1
x16
(
x1
x15
x17
)
)
)
(
x9
x15
x16
x17
=
x3
(
x1
(
x1
x17
x15
)
x16
)
(
x1
x15
x16
)
)
)
⟶
x14
)
⟶
x14
Known
bca1a..
LoopE
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
Loop
x0
x1
x2
x3
x4
⟶
∀ x5 : ο .
(
binop_on
x0
x1
⟶
binop_on
x0
x2
⟶
binop_on
x0
x3
⟶
(
∀ x6 .
In
x6
x0
⟶
and
(
x1
x4
x6
=
x6
)
(
x1
x6
x4
=
x6
)
)
⟶
(
∀ x6 .
In
x6
x0
⟶
∀ x7 .
In
x7
x0
⟶
and
(
and
(
and
(
x2
x6
(
x1
x6
x7
)
=
x7
)
(
x1
x6
(
x2
x6
x7
)
=
x7
)
)
(
x3
(
x1
x6
x7
)
x7
=
x6
)
)
(
x1
(
x3
x6
x7
)
x7
=
x6
)
)
⟶
x5
)
⟶
x5
Known
c4530..
binop_on_def
:
binop_on
=
λ x1 .
λ x2 :
ι →
ι → ι
.
∀ x3 .
In
x3
x1
⟶
∀ x4 .
In
x4
x1
⟶
In
(
x2
x3
x4
)
x1
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
00c7f..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
∀ x14 : ο .
(
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x1
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x2
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x3
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x7
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
In
(
x8
x15
x16
x17
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
In
(
x9
x15
x16
x17
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x10
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x11
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x12
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x13
x15
x16
)
x0
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x1
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x1
x15
x4
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x2
x15
(
x1
x15
x16
)
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x15
(
x2
x15
x16
)
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x3
(
x1
x15
x16
)
x16
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
(
x3
x15
x16
)
x16
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x1
x15
x16
=
x1
x15
x17
⟶
x16
=
x17
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x1
x15
x16
=
x1
x17
x16
⟶
x15
=
x17
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x5
x15
x16
=
x2
(
x1
x16
x15
)
(
x1
x15
x16
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x6
x15
x16
x17
=
x2
(
x1
x15
(
x1
x16
x17
)
)
(
x1
(
x1
x15
x16
)
x17
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x7
x15
x16
=
x2
x15
(
x1
x16
x15
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x10
x15
x16
=
x1
x15
(
x1
x16
(
x2
x15
x4
)
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x11
x15
x16
=
x1
(
x1
(
x3
x4
x15
)
x16
)
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x12
x15
x16
=
x1
(
x2
x15
x16
)
(
x2
(
x2
x15
x4
)
x4
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x13
x15
x16
=
x1
(
x3
x4
(
x3
x4
x15
)
)
(
x3
x16
x15
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x15
x16
x17
=
x2
(
x1
x16
x15
)
(
x1
x16
(
x1
x15
x17
)
)
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x15
x16
x17
=
x3
(
x1
(
x1
x17
x15
)
x16
)
(
x1
x15
x16
)
)
⟶
x14
)
⟶
x14
(proof)
Theorem
0fc9f..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
∀ x14 : ο .
(
(
∀ x15 .
In
x15
x0
⟶
x2
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x2
x15
x15
=
x4
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x3
x15
x4
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x3
x15
x15
=
x4
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x4
x15
x16
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x15
x4
x16
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x4
x15
x16
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x15
x4
x16
=
x16
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x7
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x10
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x11
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x12
x4
x15
=
x15
)
⟶
(
∀ x15 .
In
x15
x0
⟶
x13
x4
x15
=
x15
)
⟶
x14
)
⟶
x14
(proof)
Known
1449b..
Loop_with_defs_cex1_E
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
not
(
x5
(
x1
(
x2
(
x8
x16
x17
x15
)
x4
)
x15
)
x18
=
x4
)
⟶
x14
)
⟶
x14
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
b5371..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x1
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x2
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x3
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x7
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x8
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x9
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x10
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x11
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x12
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x13
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x2
x14
(
x1
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
x14
(
x2
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x3
(
x1
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
(
x3
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x14
x16
⟶
x15
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x16
x15
⟶
x14
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x5
x14
x15
=
x2
(
x1
x15
x14
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x6
x14
x15
x16
=
x2
(
x1
x14
(
x1
x15
x16
)
)
(
x1
(
x1
x14
x15
)
x16
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x7
x14
x15
=
x2
x14
(
x1
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x10
x14
x15
=
x1
x14
(
x1
x15
(
x2
x14
x4
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x11
x14
x15
=
x1
(
x1
(
x3
x4
x14
)
x15
)
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x12
x14
x15
=
x1
(
x2
x14
x15
)
(
x2
(
x2
x14
x4
)
x4
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x13
x14
x15
=
x1
(
x3
x4
(
x3
x4
x14
)
)
(
x3
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
x16
=
x2
(
x1
x15
x14
)
(
x1
x15
(
x1
x14
x16
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
x16
=
x3
(
x1
(
x1
x16
x14
)
x15
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x7
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x10
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x11
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x12
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x13
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x14
x4
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x14
x4
x15
=
x15
)
⟶
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
x14
x15
=
x1
x15
x14
)
⟶
False
(proof)
Known
9c580..
Loop_with_defs_cex2_E
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
not
(
x6
x19
(
x1
(
x3
x4
x15
)
(
x9
x16
x17
x15
)
)
x18
=
x4
)
⟶
x14
)
⟶
x14
Theorem
7c609..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x1
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x2
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x3
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x7
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x8
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x9
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x10
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x11
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x12
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x13
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x2
x14
(
x1
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
x14
(
x2
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x3
(
x1
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
(
x3
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x14
x16
⟶
x15
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x16
x15
⟶
x14
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x5
x14
x15
=
x2
(
x1
x15
x14
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x6
x14
x15
x16
=
x2
(
x1
x14
(
x1
x15
x16
)
)
(
x1
(
x1
x14
x15
)
x16
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x7
x14
x15
=
x2
x14
(
x1
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x10
x14
x15
=
x1
x14
(
x1
x15
(
x2
x14
x4
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x11
x14
x15
=
x1
(
x1
(
x3
x4
x14
)
x15
)
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x12
x14
x15
=
x1
(
x2
x14
x15
)
(
x2
(
x2
x14
x4
)
x4
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x13
x14
x15
=
x1
(
x3
x4
(
x3
x4
x14
)
)
(
x3
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
x16
=
x2
(
x1
x15
x14
)
(
x1
x15
(
x1
x14
x16
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
x16
=
x3
(
x1
(
x1
x16
x14
)
x15
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x7
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x10
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x11
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x12
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x13
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x14
x4
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x14
x4
x15
=
x15
)
⟶
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
(
x1
x15
x16
)
=
x1
(
x1
x14
x15
)
x16
)
⟶
False
(proof)
Theorem
f_eq_i
f_equal_i_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
(proof)
Theorem
0cea0..
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x2
=
x0
x1
(proof)
Theorem
68ce2..
:
∀ x0 x1 .
(
x0
=
x1
⟶
False
)
⟶
x1
=
x0
⟶
False
(proof)
Theorem
bb4b2..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
In
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
In
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x0
⟶
∀ x6 .
In
x6
x0
⟶
In
(
x3
x4
x5
x6
)
x0
)
⟶
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x0
⟶
∀ x6 :
ι →
ι →
ι → ι
.
(
∀ x7 .
In
x7
x0
⟶
∀ x8 .
In
x8
x0
⟶
∀ x9 .
In
x9
x0
⟶
In
(
x6
x7
x8
x9
)
x0
)
⟶
∀ x7 .
In
x7
x0
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
In
(
x8
x9
x10
)
x0
)
⟶
∀ x9 :
ι →
ι → ι
.
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
In
(
x9
x10
x11
)
x0
)
⟶
∀ x10 :
ι →
ι → ι
.
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
In
(
x10
x11
x12
)
x0
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x10
x11
(
x9
x11
x12
)
=
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x1
x11
x12
=
x9
x11
(
x10
x12
x11
)
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
(
x8
x7
x11
=
x11
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
(
x2
x7
x11
=
x11
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x6
x7
x11
x12
=
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x3
x11
x7
x12
=
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
∀ x13 .
In
x13
x0
⟶
(
x6
x11
x12
(
x2
x11
(
x1
x12
(
x6
x11
x12
(
x2
x11
(
x1
x12
x13
)
)
)
)
)
=
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
∀ x13 .
In
x13
x0
⟶
(
x3
x11
x12
(
x1
x11
(
x8
x12
(
x3
x11
x12
(
x1
x11
(
x8
x12
(
x3
x11
x12
(
x1
x11
(
x8
x12
x13
)
)
)
)
)
)
)
)
=
x13
⟶
False
)
⟶
False
)
⟶
(
x10
x5
x4
=
x10
x4
x5
⟶
False
)
⟶
False
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Theorem
7d2a1..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x12
x14
(
x7
x15
(
x8
x14
x15
(
x12
x14
(
x7
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x7
x14
(
x10
x15
(
x9
x14
x15
(
x7
x14
(
x10
x15
(
x9
x14
x15
(
x7
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x12
x15
(
x13
x16
x17
)
)
=
x12
x15
(
x13
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
x18
)
)
=
x7
x16
(
x10
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x13
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
(proof)
Theorem
f8f92..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
In
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
In
(
x2
x3
x4
)
x0
)
⟶
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
∀ x5 :
ι →
ι →
ι → ι
.
(
∀ x6 .
In
x6
x0
⟶
∀ x7 .
In
x7
x0
⟶
∀ x8 .
In
x8
x0
⟶
In
(
x5
x6
x7
x8
)
x0
)
⟶
∀ x6 .
In
x6
x0
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
In
x8
x0
⟶
∀ x9 .
In
x9
x0
⟶
In
(
x7
x8
x9
)
x0
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
In
(
x8
x9
x10
)
x0
)
⟶
∀ x9 :
ι →
ι → ι
.
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
In
(
x9
x10
x11
)
x0
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
(
x9
x10
(
x8
x10
x11
)
=
x11
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
(
x1
x10
x11
=
x8
x10
(
x9
x11
x10
)
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
(
x7
x6
x10
=
x10
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
(
x2
x6
x10
=
x10
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
(
x5
x6
x10
x11
=
x11
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
(
x5
x10
x6
x11
=
x11
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x5
x10
x11
(
x1
x10
(
x2
x11
(
x5
x10
x11
(
x1
x10
(
x2
x11
(
x5
x10
x11
(
x1
x10
(
x2
x11
x12
)
)
)
)
)
)
)
)
=
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x5
x10
x11
(
x7
x10
(
x1
x11
(
x5
x10
x11
(
x7
x10
(
x1
x11
x12
)
)
)
)
)
=
x12
⟶
False
)
⟶
False
)
⟶
(
x9
x4
x3
=
x9
x3
x4
⟶
False
)
⟶
False
(proof)