Search for blocks/addresses/...

Proofgold Asset

asset id
1c3d2eff80c8e17b84f8f1b7b2ef83518341455c20705779da1753b5c79da534
asset hash
67b0e509072dc62c1b65932057177d2269d636954583578e83f65230be947989
bday / block
11300
tx
5b898..
preasset
doc published by PrEBh..
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7x7 = x5 x6))
Param MetaFunctor_strictMetaFunctor_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaNatTransMetaNatTrans : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → ο
Param MetaAdjunctionMetaAdjunction : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Known 29671..MetaAdjunction_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x15 . x15) (λ x15 x16 x17 . x17) (λ x15 . x10 (x8 x15)) (λ x15 x16 x17 . x11 (x8 x15) (x8 x16) (x9 x15 x16 x17)) x12MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x15 . x8 (x10 x15)) (λ x15 x16 x17 . x9 (x10 x15) (x10 x16) (x11 x15 x16 x17)) (λ x15 . x15) (λ x15 x16 x17 . x17) x13MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13x14)x14
Known e6292..MetaAdjunctionE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . ((∀ x15 . x0 x15x7 (x8 x15) (x8 (x10 (x8 x15))) (x8 x15) (x13 (x8 x15)) (x9 x15 (x10 (x8 x15)) (x12 x15)) = x6 (x8 x15))(∀ x15 . x4 x15x3 (x10 x15) (x10 (x8 (x10 x15))) (x10 x15) (x11 (x8 (x10 x15)) x15 (x13 x15)) (x12 (x10 x15)) = x2 (x10 x15))x14)x14
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 95305..MetaFunctor_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . (MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9x10)x10
Param MetaFunctor_prop1idT : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Definition MetaFunctor_prop2compT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . x0 x4x0 x5x0 x6x1 x4 x5 x7x1 x5 x6 x8x1 x4 x6 (x3 x4 x5 x6 x8 x7)
Known 7da4b..MetaCat_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3∀ x4 : ο . (MetaFunctor_prop1 x0 x1 x2 x3MetaFunctor_prop2 x0 x1 x2 x3(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x5 x6 x7 (x2 x5) = x7)(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x6 x6 (x2 x6) x7 = x7)(∀ x5 x6 x7 x8 x9 x10 x11 . x0 x5x0 x6x0 x7x0 x8x1 x5 x6 x9x1 x6 x7 x10x1 x7 x8 x11x3 x5 x6 x8 (x3 x6 x7 x8 x11 x10) x9 = x3 x5 x7 x8 x11 (x3 x5 x6 x7 x10 x9))x4)x4
Known 973e2..MetaFunctorE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . ((∀ x11 . x0 x11x4 (x8 x11))(∀ x11 x12 x13 . x0 x11x0 x12x1 x11 x12 x13x5 (x8 x11) (x8 x12) (x9 x11 x12 x13))(∀ x11 . x0 x11x9 x11 x11 (x2 x11) = x6 (x8 x11))(∀ x11 x12 x13 x14 x15 . x0 x11x0 x12x0 x13x1 x11 x12 x14x1 x12 x13 x15x9 x11 x13 (x3 x11 x12 x13 x15 x14) = x7 (x8 x11) (x8 x12) (x8 x13) (x9 x12 x13 x15) (x9 x11 x12 x14))x10)x10
Known aa53a..MetaNatTransE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . ((∀ x14 . x0 x14x5 (x8 x14) (x10 x14) (x12 x14))(∀ x14 x15 x16 . x0 x14x0 x15x1 x14 x15 x16x7 (x8 x14) (x10 x14) (x10 x15) (x11 x14 x15 x16) (x12 x14) = x7 (x8 x14) (x8 x15) (x10 x15) (x12 x15) (x9 x14 x15 x16))x13)x13
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 09501.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15∀ x16 : ο . (∀ x17 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x17x16)x16 (proof)
Param pack_ppack_p : ι(ιο) → ι
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Param UnaryPredHomHom_struct_p : ιιιο
Param lamSigma : ι(ιι) → ι
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known caa5e..MetaCat_struct_p : MetaCat struct_p UnaryPredHom struct_id struct_comp
Definition TrueTrue := ∀ x0 : ο . x0x0
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Known 40bbd..MetaCat_struct_p_Forgetful : MetaFunctor struct_p UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Definition FalseFalse := ∀ x0 : ο . x0
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem 1615b..MetaCat_struct_p_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p struct_p UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param ordsuccordsucc : ιι
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Known In_0_1In_0_1 : 01
Known TrueITrueI : True
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 14bd1..MetaCat_struct_p_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p struct_p UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known d6aa5..MetaAdjunction_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Known 5cbb4..MetaFunctor_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known 2cb62..MetaFunctorI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . (∀ x10 . x0 x10x4 (x8 x10))(∀ x10 x11 x12 . x0 x10x0 x11x1 x10 x11 x12x5 (x8 x10) (x8 x11) (x9 x10 x11 x12))(∀ x10 . x0 x10x9 x10 x10 (x2 x10) = x6 (x8 x10))(∀ x10 x11 x12 x13 x14 . x0 x10x0 x11x0 x12x1 x10 x11 x13x1 x11 x12 x14x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13))MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known c1d68..MetaNatTransI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . (∀ x13 . x0 x13x5 (x8 x13) (x10 x13) (x12 x13))(∀ x13 x14 x15 . x0 x13x0 x14x1 x13 x14 x15x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
Known lam_id_exp_Inlam_id_exp_In : ∀ x0 . lam_id x0setexp x0 x0
Known lam_comp_id_Rlam_comp_id_R : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 x2 (lam_id x0) = x2
Known lam_comp_id_Llam_comp_id_L : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 (lam_id x1) x2 = x2
Known fd494..MetaAdjunctionI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . (∀ x14 . x0 x14x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14))(∀ x14 . x4 x14x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14))MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Theorem c3ca2..MetaCat_struct_p_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) struct_p UnaryPredHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem eb75e.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))(∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5)x4)x4) = ∀ x4 : ο . (∀ x5 . and (x5x0) (x1 x5)x4)x4 (proof)
Known unpack_p_o_equnpack_p_o_eq : ∀ x0 : ι → (ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_o (pack_p x1 x2) x0 = x0 x1 x2
Theorem 93af6.. : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 x3)x2)x2)PtdPred (pack_p x0 x1) (proof)
Theorem d8d91.. : ∀ x0 . PtdPred x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . ∀ x4 . x4x2x3 x4x1 (pack_p x2 x3))x1 x0 (proof)
Known aef2e..MetaCat_struct_p_nonempty : MetaCat PtdPred UnaryPredHom struct_id struct_comp
Known 0322a..MetaCat_struct_p_nonempty_Forgetful : MetaFunctor PtdPred UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known In_1_2In_1_2 : 12
Known In_0_2In_0_2 : 02
Theorem 701ad.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p PtdPred UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0) (proof)
Known 80cab..MetaCatSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0
Theorem b7c45.. : not (∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) PtdPred UnaryPredHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0) (proof)
Theorem 128d6..MetaCat_struct_p_nonempty_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p PtdPred UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param pack_epack_e : ιιι
Definition struct_estruct_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 x3 . x3x2x1 (pack_e x2 x3))x1 x0
Param PtdSetHomHom_struct_e : ιιιο
Param unpack_e_iunpack_e_i : ιCT2 ι
Known unpack_e_i_equnpack_e_i_eq : ∀ x0 : ι → ι → ι . ∀ x1 x2 . unpack_e_i (pack_e x1 x2) x0 = x0 x1 x2
Known f65a3..Hom_struct_e_pack : ∀ x0 x1 x2 x3 x4 . PtdSetHom (pack_e x0 x2) (pack_e x1 x3) x4 = and (x4setexp x1 x0) (ap x4 x2 = x3)
Known pack_e_0_eq2pack_e_0_eq2 : ∀ x0 x1 . x0 = ap (pack_e x0 x1) 0
Theorem 1f2a9..MetaFunctor_struct_e_struct_p_nonempty : MetaFunctor struct_e PtdSetHom (λ x0 . lam_id (ap x0 0)) (λ x0 x1 x2 . lam_comp (ap x0 0)) PtdPred UnaryPredHom (λ x0 . lam_id (ap x0 0)) (λ x0 x1 x2 . lam_comp (ap x0 0)) (λ x0 . unpack_e_i x0 (λ x1 x2 . pack_p x1 (λ x3 . x3 = x2))) (λ x0 x1 x2 . x2) (proof)
Param pack_rpack_r : ι(ιιο) → ι
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Param BinRelnHomHom_struct_r : ιιιο
Known 6955f..MetaCat_struct_r : MetaCat struct_r BinRelnHom struct_id struct_comp
Known 07626..MetaCat_struct_r_Forgetful : MetaFunctor struct_r BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known pack_struct_r_Ipack_struct_r_I : ∀ x0 . ∀ x1 : ι → ι → ο . struct_r (pack_r x0 x1)
Known c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7))
Theorem d664c..MetaCat_struct_r_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p struct_r BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Theorem f400a..MetaCat_struct_r_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p struct_r BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 301a5..MetaCat_struct_r_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) struct_r BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition PERstruct_r_per := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known unpack_r_o_equnpack_r_o_eq : ∀ x0 : ι → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_o (pack_r x1 x2) x0 = x0 x1 x2
Theorem b47fa.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x4 x6 x5) (∀ x5 . x5x3∀ x6 . x6x3∀ x7 . x7x3x4 x5 x6x4 x6 x7x4 x5 x7)) = and (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4x1 x4 x3) (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0x1 x3 x4x1 x4 x5x1 x3 x5) (proof)
Theorem a3466.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)PER (pack_r x0 x1) (proof)
Known 259fb..MetaCat_struct_r_per : MetaCat PER BinRelnHom struct_id struct_comp
Known 1b780..MetaCat_struct_r_per_Forgetful : MetaFunctor PER BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Theorem 0bd5c.. : ∀ x0 . PER x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0 (proof)
Theorem bf553..MetaCat_struct_r_per_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p PER BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 8dcfe..MetaCat_struct_r_per_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) PER BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 743bb..MetaCat_struct_r_per_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p PER BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition EquivRelnstruct_r_equivreln := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (∀ x3 . x3x1x2 x3 x3) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 7e6b7.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (and (∀ x5 . x5x3x4 x5 x5) (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x4 x6 x5)) (∀ x5 . x5x3∀ x6 . x6x3∀ x7 . x7x3x4 x5 x6x4 x6 x7x4 x5 x7)) = and (and (∀ x3 . x3x0x1 x3 x3) (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4x1 x4 x3)) (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0x1 x3 x4x1 x4 x5x1 x3 x5) (proof)
Theorem 517b3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0x1 x2 x2)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)EquivReln (pack_r x0 x1) (proof)
Theorem 909a7.. : ∀ x0 . EquivReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2x3 x4 x4)(∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0 (proof)
Known ca919..MetaCat_struct_r_equivreln : MetaCat EquivReln BinRelnHom struct_id struct_comp
Known a8025..MetaCat_struct_r_equivreln_Forgetful : MetaFunctor EquivReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Theorem ae77a..MetaCat_struct_r_equivreln_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p EquivReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 80d3d..MetaCat_struct_r_equivreln_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) EquivReln BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 5dc25..MetaCat_struct_r_equivreln_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p EquivReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition IrreflexiveTransitiveRelnstruct_r_partialord := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Theorem ef0db.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (∀ x5 . x5x3not (x4 x5 x5)) (∀ x5 . x5x3∀ x6 . x6x3∀ x7 . x7x3x4 x5 x6x4 x6 x7x4 x5 x7)) = and (∀ x3 . x3x0not (x1 x3 x3)) (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0x1 x3 x4x1 x4 x5x1 x3 x5) (proof)
Theorem b25e7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)IrreflexiveTransitiveReln (pack_r x0 x1) (proof)
Theorem af4aa.. : ∀ x0 . IrreflexiveTransitiveReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2not (x3 x4 x4))(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0 (proof)
Known c6620..MetaCat_struct_r_partialord : MetaCat IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp
Known c7aa1..MetaCat_struct_r_partialord_Forgetful : MetaFunctor IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Theorem 123cf..MetaCat_struct_r_partialord_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem f3af9..MetaCat_struct_r_partialord_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition IrreflexiveSymmetricRelnstruct_r_graph := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)))
Theorem 5344f.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (∀ x5 . x5x3not (x4 x5 x5)) (∀ x5 . x5x3∀ x6 . x6x3x4 x5 x6x4 x6 x5)) = and (∀ x3 . x3x0not (x1 x3 x3)) (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4x1 x4 x3) (proof)
Theorem 36176.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)IrreflexiveSymmetricReln (pack_r x0 x1) (proof)
Known 71675..MetaCat_struct_r_graph : MetaCat IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp
Known 1299d..MetaCat_struct_r_graph_Forgetful : MetaFunctor IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Theorem 1e88d..MetaCat_struct_r_graph_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem fc401..MetaCat_struct_r_graph_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param pack_cpack_c : ι((ιο) → ο) → ι
Definition struct_cstruct_c := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . x1 (pack_c x2 x3))x1 x0
Param PreContinuousHomHom_struct_c : ιιιο
Known ed6b5..MetaCat_struct_c : MetaCat struct_c PreContinuousHom struct_id struct_comp
Known 803c1..MetaCat_struct_c_Forgetful : MetaFunctor struct_c PreContinuousHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known pack_struct_c_Ipack_struct_c_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . struct_c (pack_c x0 x1)
Known pack_c_0_eq2pack_c_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . x0 = ap (pack_c x0 x1) 0
Known 5059f..Hom_struct_c_pack : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 . PreContinuousHom (pack_c x0 x2) (pack_c x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x1)x3 x6x2 (λ x7 . and (x7x0) (x6 (ap x4 x7))))
Theorem 40a5e..MetaCat_struct_c_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p struct_c PreContinuousHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 5da2f..MetaCat_struct_c_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) struct_c PreContinuousHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 05e4b..MetaCat_struct_c_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p struct_c PreContinuousHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2