Search for blocks/addresses/...
Proofgold Asset
asset id
68413eadaa24349adcb66aacf11d376c440c7498d3f41ec50e1e60f2c2d75a17
asset hash
f6d5b5f915e52cab169a9d02bdbef13dd0a2a3b6ef723b69180aaafbe28bd4d6
bday / block
36825
tx
4c8a0..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
07080..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
6799e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
∀ x14 : ο .
(
07080..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
(
x1
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x8
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x9
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x10
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x11
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x12
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
x0
x1
x13
⟶
x0
x2
x13
⟶
not
(
x0
x3
x13
)
⟶
x0
x4
x13
⟶
not
(
x0
x5
x13
)
⟶
not
(
x0
x6
x13
)
⟶
not
(
x0
x7
x13
)
⟶
not
(
x0
x8
x13
)
⟶
not
(
x0
x9
x13
)
⟶
not
(
x0
x10
x13
)
⟶
x0
x11
x13
⟶
not
(
x0
x12
x13
)
⟶
x14
)
⟶
x14
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
123e7..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
07080..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
⟶
∀ x16 : ο .
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x2
x14
x3
⟶
not
(
x2
x15
x3
)
⟶
x16
)
⟶
x16
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
30440..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
07080..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
⟶
6799e..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x3
(proof)