Search for blocks/addresses/...

Proofgold Asset

asset id
6ac48d3154e1bb638ea45a2e7886f49156204005b7d2be1b25168d1df1e6b68c
asset hash
e53de83e9c606b343b186c7a48d86ec33ce5a1cecf5fef0c55ae44f3e7448795
bday / block
31247
tx
26bcf..
preasset
doc published by Pr4zB..
Param add_natadd_nat : ιιι
Param u4 : ι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u5 := ordsucc u4
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 893fe.. : add_nat u4 u1 = u5 (proof)
Definition u6 := ordsucc u5
Theorem 561b1.. : add_nat u5 u1 = u6 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 80d07.. : ∀ x0 . nat_p x0∀ x1 . x1ordsucc x0or (x1 = 0) (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 = ordsucc x3)x2)x2) (proof)
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Param ordinalordinal : ιο
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known least_ordinal_exleast_ordinal_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . and (ordinal x2) (x0 x2)x1)x1)∀ x1 : ο . (∀ x2 . and (and (ordinal x2) (x0 x2)) (∀ x3 . x3x2not (x0 x3))x1)x1
Param setminussetminus : ιιι
Param SingSing : ιι
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 9c223..equip_ordsucc_remove1 : ∀ x0 x1 x2 . x2x0equip x0 (ordsucc x1)equip (setminus x0 (Sing x2)) x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Theorem e802a.. : ∀ x0 . nat_p x0∀ x1 . equip x0 x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 : ι → ι . and (inj x0 x1 x3) (∀ x4 . x4x0∀ x5 . x5x4x3 x5x3 x4)x2)x2 (proof)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known d2050.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)equip x0 (prim5 x0 x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem 9a4b0.. : ∀ x0 . nat_p x0∀ x1 . atleastp x0 x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 : ι → ι . and (inj x0 x1 x3) (∀ x4 . x4x0∀ x5 . x5x4x3 x5x3 x4)x2)x2 (proof)
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Known nat_3nat_3 : nat_p 3
Known In_0_3In_0_3 : 03
Known In_1_3In_1_3 : 13
Known In_2_3In_2_3 : 23
Known In_0_1In_0_1 : 01
Known In_1_2In_1_2 : 12
Theorem 865bf.. : ∀ x0 . atleastp u3 x0(∀ x1 . x1x0ordinal x1)∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x2x3x3x4x1)x1 (proof)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 2ec5a.. : ∀ x0 . nat_p x0∀ x1 . atleastp (ordsucc x0) x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 x4 . equip x0 x3x4x1x3x1x3x4x2)x2 (proof)
Param u17 : ι
Definition u18 := ordsucc u17
Known c5b55.. : 0u17
Theorem a7790.. : 0u18 (proof)
Known f6e42.. : u1u17
Theorem b8ca4.. : u1u18 (proof)
Known 9502b.. : u2u17
Theorem a878b.. : u2u18 (proof)
Known 35c0a.. : u3u17
Theorem d07d6.. : u3u18 (proof)
Known 793dd.. : u4u17
Theorem 6d81a.. : u4u18 (proof)
Known 79c48.. : u5u17
Theorem e36c4.. : u5u18 (proof)
Known b3205.. : u6u17
Theorem 79cb7.. : u6u18 (proof)
Param u7 : ι
Known 51ef0.. : u7u17
Theorem 56aca.. : u7u18 (proof)
Param u8 : ι
Known 6a4e9.. : u8u17
Theorem fbe02.. : u8u18 (proof)
Param u9 : ι
Known fd1a6.. : u9u17
Theorem 1a5f0.. : u9u18 (proof)
Param u10 : ι
Known e886d.. : u10u17
Theorem f5af9.. : u10u18 (proof)
Param u11 : ι
Known e57ea.. : u11u17
Theorem c2b10.. : u11u18 (proof)
Param u12 : ι
Known a1a10.. : u12u17
Theorem 6591b.. : u12u18 (proof)
Param u13 : ι
Known 7315d.. : u13u17
Theorem c4f20.. : u13u18 (proof)
Param u14 : ι
Known 35e01.. : u14u17
Theorem 755d2.. : u14u18 (proof)
Param u15 : ι
Known 31b8d.. : u15u17
Theorem 0f93a.. : u15u18 (proof)
Param u16 : ι
Known dfaf3.. : u16u17
Theorem 7e227.. : u16u18 (proof)
Theorem e0489.. : u17u18 (proof)
Definition u19 := ordsucc u18
Theorem ee3ac.. : 0u19 (proof)
Theorem 7d131.. : u1u19 (proof)
Theorem b67e6.. : u2u19 (proof)
Theorem 8cb19.. : u3u19 (proof)
Theorem 1cffe.. : u4u19 (proof)
Theorem f4c5f.. : u5u19 (proof)
Theorem 621e0.. : u6u19 (proof)
Theorem f0487.. : u7u19 (proof)
Theorem 4d195.. : u8u19 (proof)
Theorem 684da.. : u9u19 (proof)
Theorem 142ec.. : u10u19 (proof)
Theorem 58234.. : u11u19 (proof)
Theorem 4f2ac.. : u12u19 (proof)
Theorem 74754.. : u13u19 (proof)
Theorem 82290.. : u14u19 (proof)
Theorem f77c1.. : u15u19 (proof)
Theorem 8d5b9.. : u16u19 (proof)
Theorem a6826.. : u17u19 (proof)
Theorem 25029.. : u18u19 (proof)
Definition u20 := ordsucc u19
Theorem 4d7d5.. : 0u20 (proof)
Theorem 8154f.. : u1u20 (proof)
Theorem 2a239.. : u2u20 (proof)
Theorem 112c4.. : u3u20 (proof)
Theorem ae167.. : u4u20 (proof)
Theorem d15f4.. : u5u20 (proof)
Theorem 6a68d.. : u6u20 (proof)
Theorem c3da7.. : u7u20 (proof)
Theorem 67123.. : u8u20 (proof)
Theorem 63ab7.. : u9u20 (proof)
Theorem 1c8f4.. : u10u20 (proof)
Theorem 96d5f.. : u11u20 (proof)
Theorem f3e75.. : u12u20 (proof)
Theorem b5fe0.. : u13u20 (proof)
Theorem 985c5.. : u14u20 (proof)
Theorem 2a2c2.. : u15u20 (proof)
Theorem def07.. : u16u20 (proof)
Theorem de57f.. : u17u20 (proof)
Theorem 94188.. : u18u20 (proof)
Theorem 9ea5b.. : u19u20 (proof)
Definition u21 := ordsucc u20
Theorem 179f3.. : 0u21 (proof)
Theorem 07fdb.. : u1u21 (proof)
Theorem c25ea.. : u2u21 (proof)
Theorem 0750b.. : u3u21 (proof)
Theorem 701a9.. : u4u21 (proof)
Theorem 0dc69.. : u5u21 (proof)
Theorem 1d1d3.. : u6u21 (proof)
Theorem 0b77c.. : u7u21 (proof)
Theorem 5fc29.. : u8u21 (proof)
Theorem 4b046.. : u9u21 (proof)
Theorem 46da3.. : u10u21 (proof)
Theorem 3ad1f.. : u11u21 (proof)
Theorem 07061.. : u12u21 (proof)
Theorem d16a4.. : u13u21 (proof)
Theorem a6788.. : u14u21 (proof)
Theorem ce294.. : u15u21 (proof)
Theorem 20f4b.. : u16u21 (proof)
Theorem d5f90.. : u17u21 (proof)
Theorem 08993.. : u18u21 (proof)
Theorem b8dfd.. : u19u21 (proof)
Theorem c955e.. : u20u21 (proof)
Theorem edc13.. : u18 = u19∀ x0 : ο . x0 (proof)
Theorem 42954.. : u17 = u20∀ x0 : ο . x0 (proof)
Known nat_17nat_17 : nat_p u17
Theorem 2d2af.. : u12u17 (proof)
Known 2669c.. : nat_p u20
Theorem 2d95b.. : u17u20 (proof)
Known e8a0a.. : nat_p u21
Theorem c1d56.. : u17u21 (proof)
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Definition e7a80.. := λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . ap (lam 22 (λ x23 . If_i (x23 = 0) x1 (If_i (x23 = 1) x23 (If_i (x23 = 2) x3 (If_i (x23 = 3) x4 (If_i (x23 = 4) x5 (If_i (x23 = 5) x6 (If_i (x23 = 6) x7 (If_i (x23 = 7) x8 (If_i (x23 = 8) x9 (If_i (x23 = 9) x10 (If_i (x23 = 10) x11 (If_i (x23 = 11) x12 (If_i (x23 = 12) x13 (If_i (x23 = 13) x14 (If_i (x23 = 14) x15 (If_i (x23 = 15) x16 (If_i (x23 = 16) x17 (If_i (x23 = 17) x18 (If_i (x23 = 18) x19 (If_i (x23 = 19) x20 (If_i (x23 = 20) x21 x22)))))))))))))))))))))) x0
Definition 00974.. := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x9)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x10)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x11)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x12)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x13)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x14)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x15)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x16)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x17)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x18)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x19)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x20)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x21)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x22)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x23)x1 x0
Definition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)
Param u22 : ι
Definition 9043a.. := λ x0 x1 . x0u22x1u2294591.. (e7a80.. x0) (e7a80.. x1) = λ x3 x4 . x3