Search for blocks/addresses/...

Proofgold Asset

asset id
6b24ba80754d370783674d303ce2c2ca42a19e4bc152bfc43e98f47e75a14aa8
asset hash
0e034ebfca82d42e12e7f07197eabd4ec46bc794e7f4b081a5854809004846bc
bday / block
4958
tx
2fb59..
preasset
doc published by Pr6Pc..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Param SingSing : ιι
Param ordsuccordsucc : ιι
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known In_0_2In_0_2 : 02
Theorem 325cb..not_TransSet_Sing2 : not (TransSet (Sing 2)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Theorem b9e15..not_ordinal_Sing2 : not (ordinal (Sing 2)) (proof)
Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem ctagged_not_ordinalctagged_not_ordinal : ∀ x0 . not (ordinal (SetAdjoin x0 (Sing 2))) (proof)
Definition nInnIn := λ x0 x1 . not (x0x1)
Theorem ctagged_notin_ordinalctagged_notin_ordinal : ∀ x0 x1 . ordinal x0nIn (SetAdjoin x1 (Sing 2)) x0 (proof)
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Theorem Sing2_notin_SingSing1Sing2_notin_SingSing1 : nIn (Sing 2) (Sing (Sing 1)) (proof)
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Definition SNoSNo := λ x0 . ∀ x1 : ο . (∀ x2 . and (ordinal x2) (SNo_ x2 x0)x1)x1
Known FalseEFalseE : False∀ x0 : ο . x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem ctagged_notin_SNoctagged_notin_SNo : ∀ x0 x1 . SNo x0nIn (SetAdjoin x1 (Sing 2)) x0 (proof)
Definition SNo_pairSNo_pair := λ x0 x1 . binunion x0 {SetAdjoin x2 (Sing 2)|x2 ∈ x1}
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Theorem fca3d..SNo_pair_prop_1_Subq : ∀ x0 x1 x2 x3 . SNo x0SNo_pair x0 x1 = SNo_pair x2 x3x0x2 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Theorem SNo_pair_prop_1SNo_pair_prop_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x2SNo_pair x0 x1 = SNo_pair x2 x3x0 = x2 (proof)
Theorem 9d654..ctagged_eqE_Subq : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2x0∀ x3 . x3x1SetAdjoin x2 (Sing 2) = SetAdjoin x3 (Sing 2)x2x3 (proof)
Theorem ctagged_eqE_eqctagged_eqE_eq : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2x0∀ x3 . x3x1SetAdjoin x2 (Sing 2) = SetAdjoin x3 (Sing 2)x2 = x3 (proof)
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem 25d53..SNo_pair_prop_2_Subq : ∀ x0 x1 x2 x3 . SNo x1SNo x2SNo x3SNo_pair x0 x1 = SNo_pair x2 x3x1x3 (proof)
Theorem SNo_pair_prop_2SNo_pair_prop_2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo_pair x0 x1 = SNo_pair x2 x3x1 = x3 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem SNo_pair_propSNo_pair_prop : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo_pair x0 x1 = SNo_pair x2 x3and (x0 = x2) (x1 = x3) (proof)
Known Repl_EmptyRepl_Empty : ∀ x0 : ι → ι . prim5 0 x0 = 0
Known binunion_idrbinunion_idr : ∀ x0 . binunion x0 0 = x0
Theorem SNo_pair_0SNo_pair_0 : ∀ x0 . SNo_pair x0 0 = x0 (proof)
Definition CSNoCSNo := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (x0 = SNo_pair x2 x4)x3)x3)x1)x1
Theorem CSNo_ICSNo_I : ∀ x0 x1 . SNo x0SNo x1CSNo (SNo_pair x0 x1) (proof)
Theorem CSNo_ECSNo_E : ∀ x0 . CSNo x0∀ x1 : ι → ο . (∀ x2 x3 . SNo x2SNo x3x0 = SNo_pair x2 x3x1 (SNo_pair x2 x3))x1 x0 (proof)
Known SNo_0SNo_0 : SNo 0
Theorem SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0 (proof)
Definition Complex_iComplex_i := SNo_pair 0 1
Known SNo_1SNo_1 : SNo 1
Theorem SNo_Complex_iSNo_Complex_i : CSNo Complex_i (proof)
Definition CSNo_ReCSNo_Re := λ x0 . prim0 (λ x1 . and (SNo x1) (∀ x2 : ο . (∀ x3 . and (SNo x3) (x0 = SNo_pair x1 x3)x2)x2))
Definition CSNo_ImCSNo_Im := λ x0 . prim0 (λ x1 . and (SNo x1) (x0 = SNo_pair (CSNo_Re x0) x1))
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem CSNo_Re1CSNo_Re1 : ∀ x0 . CSNo x0and (SNo (CSNo_Re x0)) (∀ x1 : ο . (∀ x2 . and (SNo x2) (x0 = SNo_pair (CSNo_Re x0) x2)x1)x1) (proof)
Theorem CSNo_Re2CSNo_Re2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Re (SNo_pair x0 x1) = x0 (proof)
Theorem CSNo_Im1CSNo_Im1 : ∀ x0 . CSNo x0and (SNo (CSNo_Im x0)) (x0 = SNo_pair (CSNo_Re x0) (CSNo_Im x0)) (proof)
Theorem CSNo_Im2CSNo_Im2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Im (SNo_pair x0 x1) = x1 (proof)
Theorem CSNo_ReRCSNo_ReR : ∀ x0 . CSNo x0SNo (CSNo_Re x0) (proof)
Theorem CSNo_ImRCSNo_ImR : ∀ x0 . CSNo x0SNo (CSNo_Im x0) (proof)
Theorem CSNo_ReImCSNo_ReIm : ∀ x0 . CSNo x0x0 = SNo_pair (CSNo_Re x0) (CSNo_Im x0) (proof)
Theorem CSNo_ReIm_splitCSNo_ReIm_split : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re x0 = CSNo_Re x1CSNo_Im x0 = CSNo_Im x1x0 = x1 (proof)
Param add_SNoadd_SNo : ιιι
Definition add_CSNoadd_CSNo := λ x0 x1 . SNo_pair (add_SNo (CSNo_Re x0) (CSNo_Re x1)) (add_SNo (CSNo_Im x0) (CSNo_Im x1))
Param mul_SNomul_SNo : ιιι
Param minus_SNominus_SNo : ιι
Definition mul_CSNomul_CSNo := λ x0 x1 . SNo_pair (add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Re x1)) (minus_SNo (mul_SNo (CSNo_Im x0) (CSNo_Im x1)))) (add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Im x1)) (mul_SNo (CSNo_Im x0) (CSNo_Re x1)))
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param Eps_i_realset : ι
Param TrueTrue : ο
Definition f5776.. := ReplSep2 Eps_i_realset (λ x0 . Eps_i_realset) (λ x0 x1 . True) SNo_pair