Search for blocks/addresses/...
Proofgold Asset
asset id
6c4c0015a9636fa71c37e4eceba914f23c554883660c77bd4164d840a04bd572
asset hash
b6bcf6e4c4725f12ae90d15494466cedaea0855b38a3f8651a1458b2866f88c0
bday / block
3833
tx
62364..
preasset
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
3b429..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
:
ο
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
False
:=
∀ x0 : ο .
x0
Theorem
e6e02..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x3
x7
x8
)
x0
)
⟶
prim1
x1
x0
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x4
x7
x8
)
x0
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x7
(
x4
x8
x9
)
=
x4
(
x4
x7
x8
)
x9
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
x8
=
x4
x8
x7
)
⟶
prim1
x2
x0
⟶
(
∀ x7 .
prim1
x7
x0
⟶
(
x7
=
x1
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
x0
)
(
x4
x7
x9
=
x2
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x7
(
x3
x8
x9
)
=
x3
(
x4
x7
x8
)
(
x4
x7
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x0
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
(
x3
x7
x8
)
x9
=
x3
(
x4
x7
x9
)
(
x4
x8
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x7
x8
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x8
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x7
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x8
x10
)
⟶
x9
)
⟶
x9
)
)
)
x0
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
x8
)
)
)
x0
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
⟶
x7
=
x8
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
)
)
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
)
(
x4
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
)
)
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
⟶
(
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
)
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
prim1
x18
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
prim1
x20
x0
)
(
x7
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
prim1
x18
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
prim1
x18
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
)
(
x4
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
prim1
x18
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
prim1
x20
x0
)
(
x7
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
prim1
x16
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
)
)
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x7
x8
)
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
x0
)
(
x6
x7
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x6
x7
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
x0
)
(
x6
x7
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
x8
)
⟶
prim1
(
x6
x1
x1
)
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
⟶
prim1
(
x6
x2
x1
)
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
=
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x7
=
x1
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x4
x1
x7
=
x1
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
(
x4
x7
x7
)
(
x4
x8
x8
)
=
x1
⟶
and
(
x7
=
x1
)
(
x8
=
x1
)
)
⟶
∀ x7 .
prim1
x7
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
(
x7
=
x6
x1
x1
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
(
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
x0
)
(
x7
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
x0
)
(
x7
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
=
x6
x2
x1
)
⟶
x8
)
⟶
x8
(proof)