Search for blocks/addresses/...
Proofgold Asset
asset id
2da37b958f287b332650f64d3fdbf3aacb780cff5647c261ad910b92c87ddf26
asset hash
6e4417ca73c153890f807756fa1e424a88e7181d74bd74acecfecbfa4526f4f4
bday / block
4903
tx
9543e..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
iff_sym
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
(proof)
Theorem
iff_trans
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
not_or_and_demorgan
not_or_and_demorgan
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
and
(
not
x0
)
(
not
x1
)
(proof)
Theorem
and_not_or_demorgan
and_not_or_demorgan
:
∀ x0 x1 : ο .
and
(
not
x0
)
(
not
x1
)
⟶
not
(
or
x0
x1
)
(proof)
Theorem
not_ex_all_demorgan_i
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
not_all_ex_demorgan_i
not_all_ex_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
not
(
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
eq_or_nand
eq_or_nand
:
or
=
λ x1 x2 : ο .
not
(
and
(
not
x1
)
(
not
x2
)
)
(proof)
Definition
EpsR_i_i_1
EpsR_i_i_1
:=
λ x0 :
ι →
ι → ο
.
prim0
(
λ x1 .
∀ x2 : ο .
(
∀ x3 .
x0
x1
x3
⟶
x2
)
⟶
x2
)
Definition
EpsR_i_i_2
EpsR_i_i_2
:=
λ x0 :
ι →
ι → ο
.
prim0
(
x0
(
EpsR_i_i_1
x0
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
EpsR_i_i_12
EpsR_i_i_12
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 .
x0
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
⟶
x0
(
EpsR_i_i_1
x0
)
(
EpsR_i_i_2
x0
)
(proof)
Definition
DescrR_i_io_1
DescrR_i_io_1
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
prim0
(
λ x1 .
and
(
∀ x2 : ο .
(
∀ x3 :
ι → ο
.
x0
x1
x3
⟶
x2
)
⟶
x2
)
(
∀ x2 x3 :
ι → ο
.
x0
x1
x2
⟶
x0
x1
x3
⟶
x2
=
x3
)
)
Param
Descr_Vo1
Descr_Vo1
:
(
(
ι
→
ο
) →
ο
) →
ι
→
ο
Definition
DescrR_i_io_2
DescrR_i_io_2
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
Descr_Vo1
(
x0
(
DescrR_i_io_1
x0
)
)
Known
Descr_Vo1_prop
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
Theorem
DescrR_i_io_12
DescrR_i_io_12
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
x0
x2
x4
⟶
x3
)
⟶
x3
)
(
∀ x3 x4 :
ι → ο
.
x0
x2
x3
⟶
x0
x2
x4
⟶
x3
=
x4
)
⟶
x1
)
⟶
x1
)
⟶
x0
(
DescrR_i_io_1
x0
)
(
DescrR_i_io_2
x0
)
(proof)
Definition
PNoEq_
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Theorem
PNoEq_ref_
PNoEq_ref_
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
x1
(proof)
Theorem
PNoEq_sym_
PNoEq_sym_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x1
(proof)
Theorem
PNoEq_tra_
PNoEq_tra_
:
∀ x0 .
∀ x1 x2 x3 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x3
⟶
PNoEq_
x0
x1
x3
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Theorem
PNoEq_antimon_
PNoEq_antimon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
x3
∈
x2
⟶
PNoEq_
x2
x0
x1
⟶
PNoEq_
x3
x0
x1
(proof)
Definition
PNoLt_
PNoLt_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
and
(
and
(
PNoEq_
x4
x1
x2
)
(
not
(
x1
x4
)
)
)
(
x2
x4
)
)
⟶
x3
)
⟶
x3
Theorem
PNoLt_E_
PNoLt_E_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
PNoLt_irref_
PNoLt_irref_
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt_
x0
x1
x1
)
(proof)
Theorem
PNoLt_mon_
PNoLt_mon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
x3
∈
x2
⟶
PNoLt_
x3
x0
x1
⟶
PNoLt_
x2
x0
x1
(proof)
Known
ordinal_ind
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Theorem
PNoLt_trichotomy_or_
PNoLt_trichotomy_or_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
or
(
or
(
PNoLt_
x2
x0
x1
)
(
PNoEq_
x2
x0
x1
)
)
(
PNoLt_
x2
x1
x0
)
(proof)
Known
ordinal_trichotomy_or
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
x0
∈
x1
)
(
x0
=
x1
)
)
(
x1
∈
x0
)
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Theorem
PNoLt_tra_
PNoLt_tra_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 x3 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
PNoLt_
x0
x2
x3
⟶
PNoLt_
x0
x1
x3
(proof)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
PNoLt
PNoLt
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
or
(
PNoLt_
(
binintersect
x0
x2
)
x1
x3
)
(
and
(
and
(
x0
∈
x2
)
(
PNoEq_
x0
x1
x3
)
)
(
x3
x0
)
)
)
(
and
(
and
(
x2
∈
x0
)
(
PNoEq_
x2
x1
x3
)
)
(
not
(
x1
x2
)
)
)
Known
or3I1
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Theorem
PNoLtI1
PNoLtI1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt_
(
binintersect
x0
x1
)
x2
x3
⟶
PNoLt
x0
x2
x1
x3
(proof)
Known
or3I2
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Theorem
PNoLtI2
PNoLtI2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
x0
∈
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
PNoLt
x0
x2
x1
x3
(proof)
Known
or3I3
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
PNoLtI3
PNoLtI3
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
x1
∈
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
PNoLt
x0
x2
x1
x3
(proof)
Theorem
PNoLtE
PNoLtE
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt_
(
binintersect
x0
x1
)
x2
x3
⟶
x4
)
⟶
(
x0
∈
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
x4
)
⟶
(
x1
∈
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
x4
)
⟶
x4
(proof)
Known
binintersect_idem
binintersect_idem
:
∀ x0 .
binintersect
x0
x0
=
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
PNoLtE2
PNoLtE2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt
x0
x1
x0
x2
⟶
PNoLt_
x0
x1
x2
(proof)
Theorem
PNoLt_irref
PNoLt_irref
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt
x0
x1
x0
x1
)
(proof)
Known
binintersect_Subq_eq_1
binintersect_Subq_eq_1
:
∀ x0 x1 .
x0
⊆
x1
⟶
binintersect
x0
x1
=
x0
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Known
ordinal_binintersect
ordinal_binintersect
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binintersect
x0
x1
)
Theorem
PNoLt_trichotomy_or
PNoLt_trichotomy_or
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
PNoLt
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
PNoLt
x1
x3
x0
x2
)
(proof)
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
iffEL
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Theorem
PNoLtEq_tra
PNoLtEq_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
PNoLt
x0
x2
x1
x4
(proof)
Theorem
PNoEqLt_tra
PNoEqLt_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x0
x2
x1
x4
(proof)
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Theorem
PNoLt_tra
PNoLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Definition
PNoLe
PNoLe
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
PNoLt
x0
x1
x2
x3
)
(
and
(
x0
=
x2
)
(
PNoEq_
x0
x1
x3
)
)
Theorem
PNoLeI1
PNoLeI1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoLe
x0
x2
x1
x3
(proof)
Theorem
PNoLeI2
PNoLeI2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoLe
x0
x1
x0
x2
(proof)
Theorem
PNoLe_ref
PNoLe_ref
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLe
x0
x1
x0
x1
(proof)
Theorem
PNoLe_antisym
PNoLe_antisym
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoLe
x1
x3
x0
x2
⟶
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
(proof)
Theorem
PNoLtLe_tra
PNoLtLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Theorem
PNoLeLt_tra
PNoLeLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Theorem
PNoEqLe_tra
PNoEqLe_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
PNoLe
x0
x3
x1
x4
⟶
PNoLe
x0
x2
x1
x4
(proof)
Theorem
PNoLeEq_tra
PNoLeEq_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
PNoLe
x0
x2
x1
x4
(proof)
Theorem
PNoLe_tra
PNoLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLe
x0
x3
x2
x5
(proof)
Definition
PNo_downc
PNo_downc
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
ordinal
x4
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
x0
x4
x6
)
(
PNoLe
x1
x2
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Definition
PNo_upc
PNo_upc
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
ordinal
x4
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
x0
x4
x6
)
(
PNoLe
x4
x6
x1
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
PNoLe_downc
PNoLe_downc
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
PNo_downc
x0
x1
x3
⟶
PNoLe
x2
x4
x1
x3
⟶
PNo_downc
x0
x2
x4
(proof)
Theorem
PNo_downc_ref
PNo_downc_ref
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
PNo_downc
x0
x1
x2
(proof)
Theorem
PNo_upc_ref
PNo_upc_ref
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
PNo_upc
x0
x1
x2
(proof)
Theorem
PNoLe_upc
PNoLe_upc
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
PNo_upc
x0
x1
x3
⟶
PNoLe
x1
x3
x2
x4
⟶
PNo_upc
x0
x2
x4
(proof)
Definition
PNoLt_pwise
PNoLt_pwise
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
x0
x2
x3
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x1
x4
x5
⟶
PNoLt
x2
x3
x4
x5
Theorem
PNoLt_pwise_downc_upc
PNoLt_pwise_downc_upc
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
PNoLt_pwise
(
PNo_downc
x0
)
(
PNo_upc
x1
)
(proof)
Definition
PNo_rel_strict_upperbd
PNo_rel_strict_upperbd
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
x3
∈
x1
⟶
∀ x4 :
ι → ο
.
PNo_downc
x0
x3
x4
⟶
PNoLt
x3
x4
x1
x2
Definition
PNo_rel_strict_lowerbd
PNo_rel_strict_lowerbd
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
x3
∈
x1
⟶
∀ x4 :
ι → ο
.
PNo_upc
x0
x3
x4
⟶
PNoLt
x1
x2
x3
x4
Definition
PNo_rel_strict_imv
PNo_rel_strict_imv
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
PNo_rel_strict_upperbd
x0
x2
x3
)
(
PNo_rel_strict_lowerbd
x1
x2
x3
)
Theorem
PNoEq_rel_strict_upperbd
PNoEq_rel_strict_upperbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
PNo_rel_strict_upperbd
x0
x1
x2
⟶
PNo_rel_strict_upperbd
x0
x1
x3
(proof)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Theorem
PNo_rel_strict_upperbd_antimon
PNo_rel_strict_upperbd_antimon
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
∀ x3 .
x3
∈
x1
⟶
PNo_rel_strict_upperbd
x0
x1
x2
⟶
PNo_rel_strict_upperbd
x0
x3
x2
(proof)
Theorem
PNoEq_rel_strict_lowerbd
PNoEq_rel_strict_lowerbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
PNo_rel_strict_lowerbd
x0
x1
x2
⟶
PNo_rel_strict_lowerbd
x0
x1
x3
(proof)
Theorem
PNo_rel_strict_lowerbd_antimon
PNo_rel_strict_lowerbd_antimon
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
∀ x3 .
x3
∈
x1
⟶
PNo_rel_strict_lowerbd
x0
x1
x2
⟶
PNo_rel_strict_lowerbd
x0
x3
x2
(proof)
Theorem
PNoEq_rel_strict_imv
PNoEq_rel_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNoEq_
x2
x3
x4
⟶
PNo_rel_strict_imv
x0
x1
x2
x3
⟶
PNo_rel_strict_imv
x0
x1
x2
x4
(proof)
Theorem
PNo_rel_strict_imv_antimon
PNo_rel_strict_imv_antimon
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
∀ x4 .
x4
∈
x2
⟶
PNo_rel_strict_imv
x0
x1
x2
x3
⟶
PNo_rel_strict_imv
x0
x1
x4
x3
(proof)
Definition
PNo_rel_strict_uniq_imv
PNo_rel_strict_uniq_imv
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
PNo_rel_strict_imv
x0
x1
x2
x3
)
(
∀ x4 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
x2
x4
⟶
PNoEq_
x2
x3
x4
)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
PNo_rel_strict_split_imv
PNo_rel_strict_split_imv
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
PNo_rel_strict_imv
x0
x1
(
ordsucc
x2
)
(
λ x4 .
and
(
x3
x4
)
(
x4
=
x2
⟶
∀ x5 : ο .
x5
)
)
)
(
PNo_rel_strict_imv
x0
x1
(
ordsucc
x2
)
(
λ x4 .
or
(
x3
x4
)
(
x4
=
x2
)
)
)
Theorem
PNo_extend0_eq
PNo_extend0_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
and
(
x1
x2
)
(
x2
=
x0
⟶
∀ x3 : ο .
x3
)
)
(proof)
Theorem
PNo_extend1_eq
PNo_extend1_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
or
(
x1
x2
)
(
x2
=
x0
)
)
(proof)
Known
ordinal_lim_or_succ
ordinal_lim_or_succ
:
∀ x0 .
ordinal
x0
⟶
or
(
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
iffER
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
ordinal_ordsucc_In_eq
ordinal_ordsucc_In_eq
:
∀ x0 x1 .
ordinal
x0
⟶
x1
∈
x0
⟶
or
(
ordsucc
x1
∈
x0
)
(
x0
=
ordsucc
x1
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
PNo_rel_imv_ex
PNo_rel_imv_ex
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
or
(
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x4
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x2
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Definition
PNo_lenbdd
PNo_lenbdd
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
∀ x3 :
ι → ο
.
x1
x2
x3
⟶
x2
∈
x0
Theorem
PNo_lenbdd_strict_imv_extend0
PNo_lenbdd_strict_imv_extend0
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
x2
x3
⟶
PNo_rel_strict_imv
x0
x1
(
ordsucc
x2
)
(
λ x4 .
and
(
x3
x4
)
(
x4
=
x2
⟶
∀ x5 : ο .
x5
)
)
(proof)
Theorem
PNo_lenbdd_strict_imv_extend1
PNo_lenbdd_strict_imv_extend1
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
x2
x3
⟶
PNo_rel_strict_imv
x0
x1
(
ordsucc
x2
)
(
λ x4 .
or
(
x3
x4
)
(
x4
=
x2
)
)
(proof)
Theorem
PNo_lenbdd_strict_imv_split
PNo_lenbdd_strict_imv_split
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
x2
x3
⟶
PNo_rel_strict_split_imv
x0
x1
x2
x3
(proof)
Theorem
PNo_rel_imv_bdd_ex
PNo_rel_imv_bdd_ex
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
ordsucc
x2
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
PNo_strict_upperbd
PNo_strict_upperbd
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
PNoLt
x3
x4
x1
x2
Definition
PNo_strict_lowerbd
PNo_strict_lowerbd
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
PNoLt
x1
x2
x3
x4
Definition
PNo_strict_imv
PNo_strict_imv
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
PNo_strict_upperbd
x0
x2
x3
)
(
PNo_strict_lowerbd
x1
x2
x3
)
Theorem
PNoEq_strict_upperbd
PNoEq_strict_upperbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
PNo_strict_upperbd
x0
x1
x2
⟶
PNo_strict_upperbd
x0
x1
x3
(proof)
Theorem
PNoEq_strict_lowerbd
PNoEq_strict_lowerbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
PNo_strict_lowerbd
x0
x1
x2
⟶
PNo_strict_lowerbd
x0
x1
x3
(proof)
Theorem
PNoEq_strict_imv
PNoEq_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNoEq_
x2
x3
x4
⟶
PNo_strict_imv
x0
x1
x2
x3
⟶
PNo_strict_imv
x0
x1
x2
x4
(proof)
Theorem
PNo_strict_upperbd_imp_rel_strict_upperbd
PNo_strict_upperbd_imp_rel_strict_upperbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 .
x2
∈
ordsucc
x1
⟶
∀ x3 :
ι → ο
.
PNo_strict_upperbd
x0
x1
x3
⟶
PNo_rel_strict_upperbd
x0
x2
x3
(proof)
Theorem
PNo_strict_lowerbd_imp_rel_strict_lowerbd
PNo_strict_lowerbd_imp_rel_strict_lowerbd
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 .
x2
∈
ordsucc
x1
⟶
∀ x3 :
ι → ο
.
PNo_strict_lowerbd
x0
x1
x3
⟶
PNo_rel_strict_lowerbd
x0
x2
x3
(proof)
Theorem
PNo_strict_imv_imp_rel_strict_imv
PNo_strict_imv_imp_rel_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
x3
∈
ordsucc
x2
⟶
∀ x4 :
ι → ο
.
PNo_strict_imv
x0
x1
x2
x4
⟶
PNo_rel_strict_imv
x0
x1
x3
x4
(proof)
Theorem
PNo_rel_split_imv_imp_strict_imv
PNo_rel_split_imv_imp_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x2
x3
⟶
PNo_strict_imv
x0
x1
x2
x3
(proof)
Theorem
ordinal_PNo_strict_imv
ordinal_PNo_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
)
⟶
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x0
x4
x5
⟶
x4
∈
x2
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
x0
x4
x3
)
⟶
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
not
(
x1
x4
x5
)
)
⟶
PNo_strict_imv
x0
x1
x2
x3
(proof)
Theorem
PNo_lenbdd_strict_imv_ex
PNo_lenbdd_strict_imv_ex
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
ordsucc
x2
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
PNo_strict_imv
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
PNo_least_rep
PNo_least_rep
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
and
(
ordinal
x2
)
(
PNo_strict_imv
x0
x1
x2
x3
)
)
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 :
ι → ο
.
not
(
PNo_strict_imv
x0
x1
x4
x5
)
)
Known
least_ordinal_ex
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Theorem
PNo_lenbdd_least_rep_ex
PNo_lenbdd_least_rep_ex
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
PNo_least_rep
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
PNo_least_rep2
PNo_least_rep2
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
PNo_least_rep
x0
x1
x2
x3
)
(
∀ x4 .
nIn
x4
x2
⟶
not
(
x3
x4
)
)
Theorem
PNo_strict_imv_pred_eq
PNo_strict_imv_pred_eq
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNo_least_rep
x0
x1
x2
x3
⟶
PNo_strict_imv
x0
x1
x2
x4
⟶
∀ x5 .
x5
∈
x2
⟶
iff
(
x3
x5
)
(
x4
x5
)
(proof)
Known
pred_ext
pred_ext
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
iff
(
x0
x2
)
(
x1
x2
)
)
⟶
x0
=
x1
Theorem
PNo_lenbdd_least_rep2_exuniq2
PNo_lenbdd_least_rep2_exuniq2
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
(
∀ x5 x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
⟶
PNo_least_rep2
x0
x1
x4
x6
⟶
x5
=
x6
)
⟶
x3
)
⟶
x3
(proof)
Definition
PNo_bd
PNo_bd
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
DescrR_i_io_1
(
PNo_least_rep2
x0
x1
)
Definition
PNo_pred
PNo_pred
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
DescrR_i_io_2
(
PNo_least_rep2
x0
x1
)
Theorem
PNo_bd_pred_lem
PNo_bd_pred_lem
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
PNo_least_rep2
x0
x1
(
PNo_bd
x0
x1
)
(
PNo_pred
x0
x1
)
(proof)
Theorem
PNo_bd_pred
PNo_bd_pred
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
PNo_least_rep
x0
x1
(
PNo_bd
x0
x1
)
(
PNo_pred
x0
x1
)
(proof)
Theorem
PNo_bd_ord
PNo_bd_ord
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
ordinal
(
PNo_bd
x0
x1
)
(proof)
Theorem
PNo_bd_pred_strict_imv
PNo_bd_pred_strict_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
PNo_strict_imv
x0
x1
(
PNo_bd
x0
x1
)
(
PNo_pred
x0
x1
)
(proof)
Theorem
PNo_bd_least_imv
PNo_bd_least_imv
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 .
x3
∈
PNo_bd
x0
x1
⟶
∀ x4 :
ι → ο
.
not
(
PNo_strict_imv
x0
x1
x3
x4
)
(proof)
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Theorem
PNo_bd_In
PNo_bd_In
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
PNoLt_pwise
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
PNo_bd
x0
x1
∈
ordsucc
x2
(proof)
Definition
PNoCutL
PNoCutL
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
x2
∈
x0
)
(
PNoLt
x2
x3
x0
x1
)
Definition
PNoCutR
PNoCutR
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
x2
∈
x0
)
(
PNoLt
x0
x1
x2
x3
)
Theorem
PNoCutL_lenbdd
PNoCutL_lenbdd
:
∀ x0 .
∀ x1 :
ι → ο
.
PNo_lenbdd
x0
(
PNoCutL
x0
x1
)
(proof)
Theorem
PNoCutR_lenbdd
PNoCutR_lenbdd
:
∀ x0 .
∀ x1 :
ι → ο
.
PNo_lenbdd
x0
(
PNoCutR
x0
x1
)
(proof)
Theorem
PNoCut_pwise
PNoCut_pwise
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNoLt_pwise
(
PNoCutL
x0
x1
)
(
PNoCutR
x0
x1
)
(proof)
Theorem
PNoCut_strict_imv
PNoCut_strict_imv
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNo_strict_imv
(
PNoCutL
x0
x1
)
(
PNoCutR
x0
x1
)
x0
x1
(proof)
Theorem
PNoCut_bd_eq
PNoCut_bd_eq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNo_bd
(
PNoCutL
x0
x1
)
(
PNoCutR
x0
x1
)
=
x0
(proof)
Theorem
PNoCut_pred_eq
PNoCut_pred_eq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
PNo_pred
(
PNoCutL
x0
x1
)
(
PNoCutR
x0
x1
)
)
(proof)