Search for blocks/addresses/...
Proofgold Asset
asset id
6e628b5b65b3205921c6d0af253f11893afaabac2ecc19b94ecd47ad4b066820
asset hash
21ce1db2d6ecc4f5351de285263eb085c0c849962240626a00c8d743b783fabf
bday / block
3252
tx
c342e..
preasset
doc published by
PrCx1..
Known
46237..
LoopI
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
binop_on
x0
x1
⟶
binop_on
x0
x2
⟶
binop_on
x0
x3
⟶
(
∀ x5 .
In
x5
x0
⟶
and
(
x1
x4
x5
=
x5
)
(
x1
x5
x4
=
x5
)
)
⟶
(
∀ x5 .
In
x5
x0
⟶
∀ x6 .
In
x6
x0
⟶
and
(
and
(
and
(
x2
x5
(
x1
x5
x6
)
=
x6
)
(
x1
x5
(
x2
x5
x6
)
=
x6
)
)
(
x3
(
x1
x5
x6
)
x6
=
x5
)
)
(
x1
(
x3
x5
x6
)
x6
=
x5
)
)
⟶
Loop
x0
x1
x2
x3
x4
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
22d81..
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
9ae18..
SingE
:
∀ x0 x1 .
In
x1
(
Sing
x0
)
⟶
x1
=
x0
Known
86824..
binop_on_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
In
(
x1
x2
x3
)
x0
)
⟶
binop_on
x0
x1
Known
1f15b..
SingI
:
∀ x0 .
In
x0
(
Sing
x0
)
Theorem
f3ad1..
:
Loop
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
Sing
0
)
(proof)
Known
20499..
Loop_with_defs_I
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop
x0
x1
x2
x3
x4
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x5
x14
x15
=
x2
(
x1
x15
x14
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x6
x14
x15
x16
=
x2
(
x1
x14
(
x1
x15
x16
)
)
(
x1
(
x1
x14
x15
)
x16
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
and
(
and
(
and
(
and
(
x7
x14
x15
=
x2
x14
(
x1
x15
x14
)
)
(
x10
x14
x15
=
x1
x14
(
x1
x15
(
x2
x14
x4
)
)
)
)
(
x11
x14
x15
=
x1
(
x1
(
x3
x4
x14
)
x15
)
x14
)
)
(
x12
x14
x15
=
x1
(
x2
x14
x15
)
(
x2
(
x2
x14
x4
)
x4
)
)
)
(
x13
x14
x15
=
x1
(
x3
x4
(
x3
x4
x14
)
)
(
x3
x15
x14
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
and
(
x8
x14
x15
x16
=
x2
(
x1
x15
x14
)
(
x1
x15
(
x1
x14
x16
)
)
)
(
x9
x14
x15
x16
=
x3
(
x1
(
x1
x16
x14
)
x15
)
(
x1
x14
x15
)
)
)
⟶
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
1bd08..
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
6e0b2..
:
Loop_with_defs
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(proof)
Known
9d0a4..
Loop_with_defs_cex1_I
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
not
(
x5
(
x1
(
x2
(
x8
x15
x16
x14
)
x4
)
x14
)
x17
=
x4
)
⟶
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
bc517..
:
Loop_with_defs_cex1
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(proof)
Known
7054a..
Loop_with_defs_cex2_I
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
Loop_with_defs
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
not
(
x6
x18
(
x1
(
x3
x4
x14
)
(
x9
x15
x16
x14
)
)
x17
=
x4
)
⟶
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Theorem
8fd72..
:
Loop_with_defs_cex2
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
Sing
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 x2 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(proof)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
b6ecd..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
(
x8
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
(
x8
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x14
(
x8
x15
x16
(
x8
x14
x15
(
x7
x16
(
x7
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
x18
)
)
=
x12
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
bfdc7..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x13
x14
(
x10
x15
(
x9
x14
x15
(
x13
x14
(
x10
x15
(
x9
x14
x15
(
x13
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
x18
)
)
=
x13
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x13
x19
x20
)
)
)
=
x8
x17
x18
(
x13
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
01b15..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x13
x18
x19
)
)
)
=
x12
x17
(
x13
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9e519..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
x17
)
)
=
x12
x15
(
x7
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
x18
)
)
=
x7
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x13
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x7
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x13
x18
x19
)
)
)
=
x7
x17
(
x13
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x10
x18
x19
)
)
)
=
x13
x17
(
x10
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x13
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x9
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ed741..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x7
x14
(
x13
x15
(
x8
x14
x15
(
x7
x14
(
x13
x15
(
x8
x14
x15
(
x7
x14
(
x13
x15
(
x8
x14
x15
(
x7
x14
(
x13
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x10
x15
(
x10
x16
x17
)
)
=
x10
x15
(
x10
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x13
x17
x18
)
)
=
x7
x16
(
x13
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x7
x18
x19
)
)
)
=
x13
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
13105..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
x17
)
)
=
x7
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x13
x16
(
x13
x17
x18
)
)
)
=
x13
x16
(
x13
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x7
x18
x19
)
)
)
=
x7
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
73bca..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x13
x16
(
x8
x14
x15
(
x13
x16
(
x9
x14
x15
(
x13
x16
(
x8
x14
x15
(
x13
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
x17
)
)
=
x7
x15
(
x7
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x10
x18
x19
)
)
)
=
x10
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
77a24..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x10
x15
(
x8
x14
x15
(
x10
x14
(
x10
x15
(
x8
x14
x15
(
x10
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x13
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x7
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x10
x18
x19
)
)
)
=
x10
x17
(
x10
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x13
x19
x20
)
)
)
=
x8
x17
x18
(
x13
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b3c5c..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x12
x14
(
x10
x15
(
x8
x14
x15
(
x12
x14
(
x10
x15
(
x8
x14
x15
(
x12
x14
(
x10
x15
(
x8
x14
x15
(
x12
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x10
x15
(
x7
x16
x17
)
)
=
x10
x15
(
x7
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x10
x18
x19
)
)
)
=
x10
x17
(
x10
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
8db65..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
(
x8
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
(
x8
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
(
x8
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
x17
)
)
=
x10
x15
(
x7
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
x18
)
)
=
x7
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ccfbe..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x10
x18
x19
)
)
)
=
x10
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a454e..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x14
(
x9
x15
x16
(
x8
x14
x15
(
x7
x16
(
x13
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x13
x15
(
x10
x16
x17
)
)
=
x13
x15
(
x10
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e1d01..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a8630..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
x17
)
)
=
x12
x15
(
x7
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
x18
)
)
=
x10
x16
(
x10
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x13
x17
(
x10
x18
x19
)
)
)
=
x13
x17
(
x10
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
830aa..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6464f..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
(
x8
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f28c4..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
cdf7b..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x12
x15
(
x9
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x7
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
x17
)
)
=
x10
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x9
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4d769..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x14
(
x9
x15
x16
(
x8
x14
x15
(
x7
x16
(
x12
x14
(
x9
x15
x16
(
x8
x14
x15
(
x7
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x14
(
x8
x15
x16
(
x9
x14
x15
(
x12
x16
(
x13
x14
(
x8
x15
x16
(
x9
x14
x15
(
x12
x16
(
x13
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x7
x15
(
x13
x16
x17
)
)
=
x7
x15
(
x13
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4fa0a..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x7
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x7
x14
(
x9
x15
x16
(
x9
x14
x15
(
x10
x16
(
x7
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x10
x15
(
x12
x16
x17
)
)
=
x10
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x10
x18
x19
)
)
)
=
x13
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4e482..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x7
x15
(
x13
x16
x17
)
)
=
x7
x15
(
x13
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
82f4b..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x12
x16
(
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x12
x16
(
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x12
x16
(
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x12
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x13
x15
(
x8
x14
x15
(
x10
x14
(
x13
x15
(
x8
x14
x15
(
x10
x14
(
x13
x15
(
x8
x14
x15
(
x10
x14
(
x13
x15
(
x8
x14
x15
(
x10
x14
(
x13
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
x18
)
)
=
x12
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x13
x18
x19
)
)
)
=
x12
x17
(
x13
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
71c25..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
x17
)
)
=
x10
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x13
x18
x19
)
)
)
=
x7
x17
(
x13
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6f748..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x9
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
x17
)
)
=
x10
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
x18
)
)
=
x10
x16
(
x10
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x13
x15
(
x13
x16
(
x13
x17
x18
)
)
)
=
x13
x16
(
x13
x17
(
x7
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x12
x18
x19
)
)
)
=
x13
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x13
x17
(
x12
x18
x19
)
)
)
=
x13
x17
(
x12
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x13
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x9
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
36a63..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x7
x15
(
x7
x16
x17
)
)
=
x7
x15
(
x7
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x13
x17
x18
)
)
=
x7
x16
(
x13
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x13
x18
x19
)
)
)
=
x10
x17
(
x13
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x10
x18
x19
)
)
)
=
x10
x17
(
x10
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
57314..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x7
x14
(
x10
x15
(
x9
x14
x15
(
x7
x14
(
x10
x15
(
x9
x14
x15
(
x7
x14
(
x10
x15
(
x9
x14
x15
(
x7
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x10
x15
(
x13
x16
x17
)
)
=
x10
x15
(
x13
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
x18
)
)
=
x12
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7585d..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
x17
)
)
=
x10
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
x18
)
)
=
x7
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
716ff..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
x17
)
)
=
x10
x15
(
x7
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
db85e..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x12
x16
(
x8
x14
x15
(
x7
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x7
x15
(
x7
x16
x17
)
)
=
x7
x15
(
x7
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
x18
)
)
=
x7
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9038d..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
x17
)
)
=
x7
x15
(
x7
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
x18
)
)
=
x12
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
5a6ae..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
x17
)
)
=
x10
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x13
x16
(
x8
x17
x18
(
x13
x19
x20
)
)
)
=
x8
x17
x18
(
x13
x19
(
x9
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b37f1..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x14
x15
(
x10
x16
(
x9
x14
x15
(
x10
x16
(
x9
x14
x15
(
x10
x16
(
x9
x14
x15
(
x10
x16
(
x9
x14
x15
(
x10
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
(
x9
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
(
x9
x14
x15
(
x13
x16
(
x10
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
x18
)
)
=
x13
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x7
x18
x19
)
)
)
=
x7
x17
(
x7
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x10
x18
x19
)
)
)
=
x13
x17
(
x10
x18
(
x9
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x13
x19
x20
)
)
)
=
x8
x17
x18
(
x13
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3e19a..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x12
x15
(
x13
x16
x17
)
)
=
x12
x15
(
x13
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
x18
)
)
=
x10
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
03fc5..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x10
x15
(
x8
x14
x15
(
x10
x14
(
x10
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x10
x15
(
x9
x14
x15
(
x12
x14
(
x10
x15
(
x9
x14
x15
(
x12
x14
(
x10
x15
(
x9
x14
x15
(
x12
x14
(
x10
x15
(
x9
x14
x15
(
x12
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x7
x15
(
x10
x16
x17
)
)
=
x7
x15
(
x10
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x13
x18
x19
)
)
)
=
x10
x17
(
x13
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9a1bf..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x7
x16
(
x9
x14
x15
(
x12
x16
(
x9
x14
x15
(
x7
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
x18
)
)
=
x12
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x12
x18
x19
)
)
)
=
x13
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x13
x19
x20
)
)
)
=
x8
x17
x18
(
x13
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
40de5..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x10
x16
(
x13
x14
(
x8
x15
x16
(
x9
x14
x15
(
x10
x16
(
x13
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x13
x18
x19
)
)
)
=
x12
x17
(
x13
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x13
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a6dd3..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x12
x14
(
x12
x15
(
x8
x14
x15
(
x12
x14
(
x12
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
bf8e8..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
x18
)
)
=
x12
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
09cc2..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
(
x8
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
(
x8
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
(
x8
x14
x15
(
x12
x16
(
x12
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x7
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
x18
)
)
=
x7
x16
(
x7
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9c627..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x13
x15
(
x12
x16
x17
)
)
=
x13
x15
(
x12
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
x18
)
)
=
x12
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x10
x16
(
x13
x17
x18
)
)
)
=
x10
x16
(
x13
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x13
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b6e10..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x14
(
x9
x15
x16
(
x8
x14
x15
(
x10
x16
(
x10
x14
(
x9
x15
x16
(
x8
x14
x15
(
x10
x16
(
x10
x14
(
x9
x15
x16
(
x8
x14
x15
(
x10
x16
(
x10
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x7
x14
(
x13
x15
(
x12
x16
x17
)
)
=
x13
x15
(
x12
x16
(
x7
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
x18
)
)
=
x7
x16
(
x10
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x13
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x7
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x9
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b7862..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x7
x16
(
x13
x17
x18
)
)
=
x7
x16
(
x13
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x13
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x13
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4c0df..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x13
x15
(
x10
x16
x17
)
)
=
x13
x15
(
x10
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
x18
)
)
=
x12
x16
(
x10
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x13
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x7
x16
(
x12
x17
x18
)
)
)
=
x7
x16
(
x12
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x10
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x7
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x7
x18
x19
)
)
)
=
x10
x17
(
x7
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x13
x19
x20
)
)
)
=
x9
x17
x18
(
x13
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x13
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x13
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7c049..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x7
x14
(
x13
x15
(
x8
x14
x15
(
x7
x14
(
x13
x15
(
x8
x14
x15
(
x7
x14
(
x13
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x7
x14
(
x10
x15
(
x8
x14
x15
(
x7
x14
(
x10
x15
(
x8
x14
x15
(
x7
x14
(
x10
x15
(
x8
x14
x15
(
x7
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x13
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x13
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
x18
)
)
=
x12
x16
(
x10
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x13
x17
x18
)
)
)
=
x12
x16
(
x13
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x9
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
850cf..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x10
x15
(
x8
x14
x15
(
x10
x14
(
x10
x15
(
x8
x14
x15
(
x10
x14
(
x10
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
(
x8
x14
x15
(
x10
x16
(
x8
x14
x15
(
x7
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x13
x15
(
x13
x16
x17
)
)
=
x13
x15
(
x13
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x7
x16
(
x13
x17
x18
)
)
)
=
x7
x16
(
x13
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x13
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x13
x14
(
x13
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x13
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x12
x17
(
x12
x18
x19
)
)
)
=
x12
x17
(
x12
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x10
x17
(
x12
x18
x19
)
)
)
=
x10
x17
(
x12
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x8
x17
x18
(
x12
x19
x20
)
)
)
=
x8
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x10
x19
x20
)
)
)
=
x9
x17
x18
(
x10
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x13
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x7
x16
(
x13
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
695d7..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex2
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x14
(
x8
x15
x16
(
x9
x14
x15
(
x10
x16
(
x12
x14
(
x8
x15
x16
(
x9
x14
x15
(
x10
x16
(
x12
x14
(
x8
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x7
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x13
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x10
x14
(
x13
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x13
x16
(
x7
x17
(
x10
x18
x19
)
)
)
=
x7
x17
(
x10
x18
(
x8
x14
x15
(
x13
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x10
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x10
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x10
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x10
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x13
x16
(
x10
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
02e64..
:
(
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x7
x14
(
x7
x15
(
x9
x14
x15
(
x7
x14
(
x7
x15
(
x9
x14
x15
(
x7
x14
(
x7
x15
(
x9
x14
x15
(
x7
x14
(
x7
x15
(
x9
x14
x15
(
x7
x14
(
x7
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x10
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x10
x14
(
x12
x15
(
x10
x16
x17
)
)
=
x12
x15
(
x10
x16
(
x10
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
x18
)
)
=
x12
x16
(
x12
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x7
x16
(
x7
x17
x18
)
)
)
=
x7
x16
(
x7
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x13
x16
(
x10
x17
x18
)
)
)
=
x13
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x10
x16
(
x7
x17
x18
)
)
)
=
x10
x16
(
x7
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x10
x16
(
x12
x17
x18
)
)
)
=
x10
x16
(
x12
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x13
x17
(
x13
x18
x19
)
)
)
=
x13
x17
(
x13
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x12
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x9
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x9
x14
x15
(
x7
x16
(
x8
x17
x18
(
x10
x19
x20
)
)
)
=
x8
x17
x18
(
x10
x19
(
x9
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x13
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x13
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x13
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x13
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x7
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
)
⟶
∀ x0 : ο .
x0
(proof)