Search for blocks/addresses/...
Proofgold Asset
asset id
60879c65f06574e3f7c14e5cb62a649793b6ff82127cfd51e2a013a6b56d078d
asset hash
6f4495501ac6e0092708177eac14b9d23faec319178127bae65a9c6e95a95e4f
bday / block
2791
tx
7f654..
preasset
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
iff_refl
:
∀ x0 : ο .
iff
x0
x0
(proof)
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
(proof)
Theorem
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
not_or_and_demorgan
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
and
(
not
x0
)
(
not
x1
)
(proof)
Theorem
and_not_or_demorgan
:
∀ x0 x1 : ο .
and
(
not
x0
)
(
not
x1
)
⟶
not
(
or
x0
x1
)
(proof)
Theorem
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
(proof)
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
not_all_ex_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
not
(
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
eq_or_nand
:
or
=
λ x1 x2 : ο .
not
(
and
(
not
x1
)
(
not
x2
)
)
(proof)
Definition
EpsR_i_i_1
:=
λ x0 :
ι →
ι → ο
.
prim0
(
λ x1 .
∀ x2 : ο .
(
∀ x3 .
x0
x1
x3
⟶
x2
)
⟶
x2
)
Definition
EpsR_i_i_2
:=
λ x0 :
ι →
ι → ο
.
prim0
(
x0
(
EpsR_i_i_1
x0
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
EpsR_i_i_12
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 .
x0
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
⟶
x0
(
EpsR_i_i_1
x0
)
(
EpsR_i_i_2
x0
)
(proof)
Definition
DescrR_i_io_1
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
prim0
(
λ x1 .
and
(
∀ x2 : ο .
(
∀ x3 :
ι → ο
.
x0
x1
x3
⟶
x2
)
⟶
x2
)
(
∀ x2 x3 :
ι → ο
.
x0
x1
x2
⟶
x0
x1
x3
⟶
x2
=
x3
)
)
Param
Descr_Vo1
:
(
(
ι
→
ο
) →
ο
) →
ι
→
ο
Definition
DescrR_i_io_2
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
Descr_Vo1
(
x0
(
DescrR_i_io_1
x0
)
)
Known
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
Theorem
DescrR_i_io_12
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
x0
x2
x4
⟶
x3
)
⟶
x3
)
(
∀ x3 x4 :
ι → ο
.
x0
x2
x3
⟶
x0
x2
x4
⟶
x3
=
x4
)
⟶
x1
)
⟶
x1
)
⟶
x0
(
DescrR_i_io_1
x0
)
(
DescrR_i_io_2
x0
)
(proof)
Definition
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Theorem
PNoEq_ref_
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
x1
(proof)
Theorem
PNoEq_sym_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x1
(proof)
Theorem
PNoEq_tra_
:
∀ x0 .
∀ x1 x2 x3 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x3
⟶
PNoEq_
x0
x1
x3
(proof)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Theorem
PNoEq_antimon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
x2
⟶
PNoEq_
x2
x0
x1
⟶
PNoEq_
x3
x0
x1
(proof)
Definition
PNoLt_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
and
(
and
(
PNoEq_
x4
x1
x2
)
(
not
(
x1
x4
)
)
)
(
x2
x4
)
)
⟶
x3
)
⟶
x3
Theorem
PNoLt_E_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
PNoLt_irref_
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt_
x0
x1
x1
)
(proof)
Theorem
PNoLt_mon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
x2
⟶
PNoLt_
x3
x0
x1
⟶
PNoLt_
x2
x0
x1
(proof)
Known
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Theorem
PNoLt_trichotomy_or_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
or
(
or
(
PNoLt_
x2
x0
x1
)
(
PNoEq_
x2
x0
x1
)
)
(
PNoLt_
x2
x1
x0
)
(proof)
Known
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
prim1
x0
x1
)
(
x0
=
x1
)
)
(
prim1
x1
x0
)
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Theorem
PNoLt_tra_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 x3 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
PNoLt_
x0
x2
x3
⟶
PNoLt_
x0
x1
x3
(proof)
Param
d3786..
:
ι
→
ι
→
ι
Definition
40dde..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
or
(
PNoLt_
(
d3786..
x0
x2
)
x1
x3
)
(
and
(
and
(
prim1
x0
x2
)
(
PNoEq_
x0
x1
x3
)
)
(
x3
x0
)
)
)
(
and
(
and
(
prim1
x2
x0
)
(
PNoEq_
x2
x1
x3
)
)
(
not
(
x1
x2
)
)
)
Known
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Theorem
d5535..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt_
(
d3786..
x0
x1
)
x2
x3
⟶
40dde..
x0
x2
x1
x3
(proof)
Known
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Theorem
0f47f..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
prim1
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
40dde..
x0
x2
x1
x3
(proof)
Known
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
27954..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
prim1
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
40dde..
x0
x2
x1
x3
(proof)
Theorem
140e3..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt_
(
d3786..
x0
x1
)
x2
x3
⟶
x4
)
⟶
(
prim1
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
x4
)
⟶
(
prim1
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
x4
)
⟶
x4
(proof)
Known
5cae2..
:
∀ x0 .
d3786..
x0
x0
=
x0
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
60396..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
40dde..
x0
x1
x0
x2
⟶
PNoLt_
x0
x1
x2
(proof)
Theorem
7de10..
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
40dde..
x0
x1
x0
x1
)
(proof)
Known
bd118..
:
∀ x0 x1 .
Subq
x0
x1
⟶
d3786..
x0
x1
=
x0
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
d7325..
:
∀ x0 x1 .
d3786..
x0
x1
=
d3786..
x1
x0
Known
dec57..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
d3786..
x0
x1
)
Theorem
6ace3..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
40dde..
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
40dde..
x1
x3
x0
x2
)
(proof)
Known
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Theorem
43fd7..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
40dde..
x0
x2
x1
x4
(proof)
Theorem
1f4e8..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
40dde..
x0
x3
x1
x4
⟶
40dde..
x0
x2
x1
x4
(proof)
Known
2d07f..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
x1
⟶
prim1
x2
(
d3786..
x0
x1
)
Theorem
24a9c..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
40dde..
x0
x3
x1
x4
⟶
40dde..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
(proof)
Definition
35b9b..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
40dde..
x0
x1
x2
x3
)
(
and
(
x0
=
x2
)
(
PNoEq_
x0
x1
x3
)
)
Theorem
8fc51..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
35b9b..
x0
x2
x1
x3
(proof)
Theorem
a40a2..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
35b9b..
x0
x1
x0
x2
(proof)
Theorem
fb736..
:
∀ x0 .
∀ x1 :
ι → ο
.
35b9b..
x0
x1
x0
x1
(proof)
Theorem
cd912..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
35b9b..
x0
x2
x1
x3
⟶
35b9b..
x1
x3
x0
x2
⟶
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
(proof)
Theorem
146ff..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
40dde..
x0
x3
x1
x4
⟶
35b9b..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
(proof)
Theorem
9652d..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
35b9b..
x0
x3
x1
x4
⟶
40dde..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
(proof)
Theorem
da030..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
35b9b..
x0
x3
x1
x4
⟶
35b9b..
x0
x2
x1
x4
(proof)
Theorem
421fb..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
35b9b..
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
35b9b..
x0
x2
x1
x4
(proof)
Theorem
d1711..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
35b9b..
x0
x3
x1
x4
⟶
35b9b..
x1
x4
x2
x5
⟶
35b9b..
x0
x3
x2
x5
(proof)
Definition
8356a..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
ordinal
x4
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
x0
x4
x6
)
(
35b9b..
x1
x2
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Definition
610d8..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
ordinal
x4
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
x0
x4
x6
)
(
35b9b..
x4
x6
x1
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
76c44..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
8356a..
x0
x1
x3
⟶
35b9b..
x2
x4
x1
x3
⟶
8356a..
x0
x2
x4
(proof)
Theorem
46c67..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
8356a..
x0
x1
x2
(proof)
Theorem
ddfe3..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
610d8..
x0
x1
x2
(proof)
Theorem
49ea3..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
610d8..
x0
x1
x3
⟶
35b9b..
x1
x3
x2
x4
⟶
610d8..
x0
x2
x4
(proof)
Definition
ed32f..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
x0
x2
x3
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x1
x4
x5
⟶
40dde..
x2
x3
x4
x5
Theorem
0779e..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
ed32f..
(
8356a..
x0
)
(
610d8..
x1
)
(proof)
Definition
6f2c4..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x1
⟶
∀ x4 :
ι → ο
.
8356a..
x0
x3
x4
⟶
40dde..
x3
x4
x1
x2
Definition
dafc2..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x1
⟶
∀ x4 :
ι → ο
.
610d8..
x0
x3
x4
⟶
40dde..
x1
x2
x3
x4
Definition
8033b..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
6f2c4..
x0
x2
x3
)
(
dafc2..
x1
x2
x3
)
Theorem
7132a..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
6f2c4..
x0
x1
x2
⟶
6f2c4..
x0
x1
x3
(proof)
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Theorem
696cf..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x1
⟶
6f2c4..
x0
x1
x2
⟶
6f2c4..
x0
x3
x2
(proof)
Theorem
504aa..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
dafc2..
x0
x1
x2
⟶
dafc2..
x0
x1
x3
(proof)
Theorem
649ba..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x1
⟶
dafc2..
x0
x1
x2
⟶
dafc2..
x0
x3
x2
(proof)
Theorem
e4d06..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNoEq_
x2
x3
x4
⟶
8033b..
x0
x1
x2
x3
⟶
8033b..
x0
x1
x2
x4
(proof)
Theorem
0b627..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x2
⟶
8033b..
x0
x1
x2
x3
⟶
8033b..
x0
x1
x4
x3
(proof)
Definition
078b6..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
8033b..
x0
x1
x2
x3
)
(
∀ x4 :
ι → ο
.
8033b..
x0
x1
x2
x4
⟶
PNoEq_
x2
x3
x4
)
Param
4ae4a..
:
ι
→
ι
Definition
a59df..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
and
(
x3
x4
)
(
x4
=
x2
⟶
∀ x5 : ο .
x5
)
)
)
(
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
or
(
x3
x4
)
(
x4
=
x2
)
)
)
Theorem
PNo_extend0_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
and
(
x1
x2
)
(
x2
=
x0
⟶
∀ x3 : ο .
x3
)
)
(proof)
Theorem
PNo_extend1_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
or
(
x1
x2
)
(
x2
=
x0
)
)
(proof)
Known
74eef..
:
∀ x0 .
ordinal
x0
⟶
or
(
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
x0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
prim1
x2
x0
)
(
x0
=
4ae4a..
x2
)
⟶
x1
)
⟶
x1
)
Known
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Known
09068..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Known
4f62a..
:
∀ x0 x1 .
ordinal
x0
⟶
prim1
x1
x0
⟶
or
(
prim1
(
4ae4a..
x1
)
x0
)
(
x0
=
4ae4a..
x1
)
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
c79db..
:
∀ x0 .
Subq
x0
(
4ae4a..
x0
)
Theorem
c0216..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
or
(
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
078b6..
x0
x1
x2
x4
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x2
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
a59df..
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Definition
PNo_lenbdd
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
∀ x3 :
ι → ο
.
x1
x2
x3
⟶
prim1
x2
x0
Theorem
e3fc6..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
8033b..
x0
x1
x2
x3
⟶
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
and
(
x3
x4
)
(
x4
=
x2
⟶
∀ x5 : ο .
x5
)
)
(proof)
Theorem
47a05..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
8033b..
x0
x1
x2
x3
⟶
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
or
(
x3
x4
)
(
x4
=
x2
)
)
(proof)
Theorem
7a19c..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 :
ι → ο
.
8033b..
x0
x1
x2
x3
⟶
a59df..
x0
x1
x2
x3
(proof)
Theorem
f23bc..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
4ae4a..
x2
)
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
a59df..
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
cae4c..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
40dde..
x3
x4
x1
x2
Definition
bc2b0..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
40dde..
x1
x2
x3
x4
Definition
47618..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
cae4c..
x0
x2
x3
)
(
bc2b0..
x1
x2
x3
)
Theorem
654c3..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
cae4c..
x0
x1
x2
⟶
cae4c..
x0
x1
x3
(proof)
Theorem
04247..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x1
x2
x3
⟶
bc2b0..
x0
x1
x2
⟶
bc2b0..
x0
x1
x3
(proof)
Theorem
dfc25..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNoEq_
x2
x3
x4
⟶
47618..
x0
x1
x2
x3
⟶
47618..
x0
x1
x2
x4
(proof)
Theorem
2042e..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
(
4ae4a..
x1
)
⟶
∀ x3 :
ι → ο
.
cae4c..
x0
x1
x3
⟶
6f2c4..
x0
x2
x3
(proof)
Theorem
2df7d..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
(
4ae4a..
x1
)
⟶
∀ x3 :
ι → ο
.
bc2b0..
x0
x1
x3
⟶
dafc2..
x0
x2
x3
(proof)
Theorem
45f48..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
(
4ae4a..
x2
)
⟶
∀ x4 :
ι → ο
.
47618..
x0
x1
x2
x4
⟶
8033b..
x0
x1
x3
x4
(proof)
Theorem
61193..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
a59df..
x0
x1
x2
x3
⟶
47618..
x0
x1
x2
x3
(proof)
Theorem
48a9a..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
prim1
x4
x2
⟶
x3
x4
)
⟶
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x0
x4
x5
⟶
prim1
x4
x2
)
⟶
(
∀ x4 .
prim1
x4
x2
⟶
x0
x4
x3
)
⟶
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
not
(
x1
x4
x5
)
)
⟶
47618..
x0
x1
x2
x3
(proof)
Theorem
92acb..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
4ae4a..
x2
)
)
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
47618..
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
1a487..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
and
(
ordinal
x2
)
(
47618..
x0
x1
x2
x3
)
)
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 :
ι → ο
.
not
(
47618..
x0
x1
x4
x5
)
)
Known
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
prim1
x3
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Theorem
de2f8..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
1a487..
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
ced99..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
1a487..
x0
x1
x2
x3
)
(
∀ x4 .
nIn
x4
x2
⟶
not
(
x3
x4
)
)
Theorem
f2429..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
1a487..
x0
x1
x2
x3
⟶
47618..
x0
x1
x2
x4
⟶
∀ x5 .
prim1
x5
x2
⟶
iff
(
x3
x5
)
(
x4
x5
)
(proof)
Known
pred_ext
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
iff
(
x0
x2
)
(
x1
x2
)
)
⟶
x0
=
x1
Theorem
8116c..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
ced99..
x0
x1
x4
x6
⟶
x5
)
⟶
x5
)
(
∀ x5 x6 :
ι → ο
.
ced99..
x0
x1
x4
x5
⟶
ced99..
x0
x1
x4
x6
⟶
x5
=
x6
)
⟶
x3
)
⟶
x3
(proof)
Definition
7b9f3..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
DescrR_i_io_1
(
ced99..
x0
x1
)
Definition
ce2d5..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
DescrR_i_io_2
(
ced99..
x0
x1
)
Theorem
67865..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
ced99..
x0
x1
(
7b9f3..
x0
x1
)
(
ce2d5..
x0
x1
)
(proof)
Theorem
f06ce..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
1a487..
x0
x1
(
7b9f3..
x0
x1
)
(
ce2d5..
x0
x1
)
(proof)
Theorem
caca6..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
ordinal
(
7b9f3..
x0
x1
)
(proof)
Theorem
56572..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
47618..
x0
x1
(
7b9f3..
x0
x1
)
(
ce2d5..
x0
x1
)
(proof)
Theorem
01c28..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
∀ x3 .
prim1
x3
(
7b9f3..
x0
x1
)
⟶
∀ x4 :
ι → ο
.
not
(
47618..
x0
x1
x3
x4
)
(proof)
Known
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
prim1
x0
x1
)
(
Subq
x1
x0
)
Theorem
00673..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
prim1
(
7b9f3..
x0
x1
)
(
4ae4a..
x2
)
(proof)
Definition
7eb85..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
prim1
x2
x0
)
(
40dde..
x2
x3
x0
x1
)
Definition
0dfb2..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
prim1
x2
x0
)
(
40dde..
x0
x1
x2
x3
)
Theorem
a34ea..
:
∀ x0 .
∀ x1 :
ι → ο
.
PNo_lenbdd
x0
(
7eb85..
x0
x1
)
(proof)
Theorem
f50a4..
:
∀ x0 .
∀ x1 :
ι → ο
.
PNo_lenbdd
x0
(
0dfb2..
x0
x1
)
(proof)
Theorem
83944..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
ed32f..
(
7eb85..
x0
x1
)
(
0dfb2..
x0
x1
)
(proof)
Theorem
92f73..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
47618..
(
7eb85..
x0
x1
)
(
0dfb2..
x0
x1
)
x0
x1
(proof)
Theorem
9524b..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
7b9f3..
(
7eb85..
x0
x1
)
(
0dfb2..
x0
x1
)
=
x0
(proof)
Theorem
f1225..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
ce2d5..
(
7eb85..
x0
x1
)
(
0dfb2..
x0
x1
)
)
(proof)