Search for blocks/addresses/...
Proofgold Asset
asset id
39d94a89039b03a72457775f0eb37e76ed50b9c253dc57b05e4bb380ec445b0e
asset hash
6ff6ae710513336c61567c31c17e3cecf737543a782c4d9c1e6c3e44583c131e
bday / block
21516
tx
edfe4..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
96959..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
not
(
x1
x8
)
⟶
∀ x9 :
ι → ο
.
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x2
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x7
x9
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x7
x7
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x6
x7
x10
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x7
x7
x10
)
⟶
x9
x2
x6
x4
x6
⟶
x9
x2
x6
x4
x7
⟶
x9
x2
x6
x5
x6
⟶
x9
x2
x6
x5
x7
⟶
x9
x2
x6
x7
x6
⟶
x9
x2
x7
x4
x7
⟶
x9
x2
x7
x5
x7
⟶
x9
x3
x6
x3
x7
⟶
x9
x3
x6
x5
x6
⟶
x9
x3
x6
x5
x7
⟶
x9
x3
x6
x6
x7
⟶
x9
x3
x6
x7
x6
⟶
x9
x3
x7
x5
x7
⟶
x9
x4
x6
x2
x7
⟶
x9
x4
x6
x4
x7
⟶
x9
x5
x6
x2
x7
⟶
x9
x5
x6
x3
x7
⟶
x9
x6
x6
x3
x7
⟶
x9
x7
x6
x2
x7
⟶
x9
x7
x6
x3
x7
⟶
x9
x7
x6
x6
x7
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x1
x10
)
⟶
not
(
x1
x11
)
⟶
x12
=
x6
⟶
not
(
x1
x13
)
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
x8
x14
x10
x15
x11
⟶
x8
x15
x11
x16
x12
⟶
x8
x16
x12
x17
x13
⟶
not
(
x9
x14
x10
x15
x11
)
⟶
not
(
x9
x14
x10
x16
x12
)
⟶
not
(
x9
x14
x10
x17
x13
)
⟶
not
(
x9
x15
x11
x16
x12
)
⟶
not
(
x9
x15
x11
x17
x13
)
⟶
not
(
x9
x16
x12
x17
x13
)
⟶
∀ x18 : ο .
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x3
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x2
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x7
⟶
x12
=
x6
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x2
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x7
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x2
⟶
x11
=
x7
⟶
x16
=
x3
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x4
⟶
x11
=
x7
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x6
⟶
x10
=
x6
⟶
x15
=
x4
⟶
x11
=
x7
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
x18
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
26c4d..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
not
(
x1
x8
)
⟶
∀ x9 :
ι → ο
.
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x2
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x7
x9
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x7
x7
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x6
x7
x10
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x7
x7
x10
)
⟶
x9
x2
x6
x4
x6
⟶
x9
x2
x6
x4
x7
⟶
x9
x2
x6
x5
x6
⟶
x9
x2
x6
x5
x7
⟶
x9
x2
x6
x7
x6
⟶
x9
x2
x7
x4
x7
⟶
x9
x2
x7
x5
x7
⟶
x9
x3
x6
x3
x7
⟶
x9
x3
x6
x5
x6
⟶
x9
x3
x6
x5
x7
⟶
x9
x3
x6
x6
x7
⟶
x9
x3
x6
x7
x6
⟶
x9
x3
x7
x5
x7
⟶
x9
x4
x6
x2
x7
⟶
x9
x4
x6
x4
x7
⟶
x9
x5
x6
x2
x7
⟶
x9
x5
x6
x3
x7
⟶
x9
x6
x6
x3
x7
⟶
x9
x7
x6
x2
x7
⟶
x9
x7
x6
x3
x7
⟶
x9
x7
x6
x6
x7
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x1
x10
)
⟶
not
(
x1
x11
)
⟶
not
(
x1
x12
)
⟶
not
(
x1
x13
)
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
x8
x14
x10
x15
x11
⟶
x8
x15
x11
x16
x12
⟶
x8
x16
x12
x17
x13
⟶
not
(
x9
x14
x10
x15
x11
)
⟶
not
(
x9
x14
x10
x16
x12
)
⟶
not
(
x9
x14
x10
x17
x13
)
⟶
not
(
x9
x15
x11
x16
x12
)
⟶
not
(
x9
x15
x11
x17
x13
)
⟶
not
(
x9
x16
x12
x17
x13
)
⟶
∀ x18 : ο .
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x3
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x2
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x6
⟶
x12
=
x6
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x7
⟶
x12
=
x6
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x2
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x5
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x4
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x6
⟶
x11
=
x6
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x7
⟶
x11
=
x6
⟶
x16
=
x4
⟶
x12
=
x7
⟶
x17
=
x5
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x2
⟶
x10
=
x6
⟶
x15
=
x2
⟶
x11
=
x7
⟶
x16
=
x3
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x5
⟶
x10
=
x6
⟶
x15
=
x4
⟶
x11
=
x7
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
(
x14
=
x6
⟶
x10
=
x6
⟶
x15
=
x4
⟶
x11
=
x7
⟶
x16
=
x5
⟶
x12
=
x7
⟶
x17
=
x6
⟶
x13
=
x7
⟶
x18
)
⟶
x18
(proof)