Search for blocks/addresses/...
Proofgold Asset
asset id
70137e7a79110cb136ed1eacbf4c738ba801372c498ddc0317501dd6c58ddd70
asset hash
e4782ef1bc998763af986acbee4f39c670e19aa605e0592172d3e192ebab5ef9
bday / block
1473
tx
0d78c..
preasset
doc published by
PrGxv..
Theorem
15e97..
eq_sym_i
:
∀ x0 x1 .
x0
=
x1
⟶
x1
=
x0
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
73fda..
neq_sym_i
:
∀ x0 x1 .
not
(
x0
=
x1
)
⟶
not
(
x1
=
x0
)
(proof)
Known
61ad0..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
9d2e6..
nIn_I2
:
∀ x0 x1 .
(
In
x0
x1
⟶
False
)
⟶
nIn
x0
x1
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Theorem
e85f6..
In_irref
:
∀ x0 .
nIn
x0
x0
(proof)
Theorem
0f73a..
In_no2cycle
:
∀ x0 x1 .
In
x0
x1
⟶
In
x1
x0
⟶
False
(proof)
Theorem
a0c6c..
In_no3cycle
:
∀ x0 x1 x2 .
In
x0
x1
⟶
In
x1
x2
⟶
In
x2
x0
⟶
False
(proof)
Known
c5eb1..
ordsucc_def
:
ordsucc
=
λ x1 .
binunion
x1
(
Sing
x1
)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
0ce8c..
binunionI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
binunion
x0
x1
)
Theorem
165f2..
ordsuccI1
:
∀ x0 .
Subq
x0
(
ordsucc
x0
)
(proof)
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
e9b50..
ordsuccI1b
:
∀ x0 x1 .
In
x1
x0
⟶
In
x1
(
ordsucc
x0
)
(proof)
Known
eb8b4..
binunionI2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
x2
(
binunion
x0
x1
)
Known
1f15b..
SingI
:
∀ x0 .
In
x0
(
Sing
x0
)
Theorem
cf025..
ordsuccI2
:
∀ x0 .
In
x0
(
ordsucc
x0
)
(proof)
Known
f9974..
binunionE_cases
:
∀ x0 x1 x2 .
In
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
9ae18..
SingE
:
∀ x0 x1 .
In
x1
(
Sing
x0
)
⟶
x1
=
x0
Theorem
1373d..
ordsuccE
:
∀ x0 x1 .
In
x1
(
ordsucc
x0
)
⟶
or
(
In
x1
x0
)
(
x1
=
x0
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
b4776..
ordsuccE_impred
:
∀ x0 x1 .
In
x1
(
ordsucc
x0
)
⟶
∀ x2 : ο .
(
In
x1
x0
⟶
x2
)
⟶
(
x1
=
x0
⟶
x2
)
⟶
x2
(proof)
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
c985e..
neq_0_ordsucc
:
∀ x0 .
not
(
0
=
ordsucc
x0
)
(proof)
Theorem
0610a..
neq_ordsucc_0
:
∀ x0 .
not
(
ordsucc
x0
=
0
)
(proof)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
74738..
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
(proof)
Theorem
aaf17..
ordsucc_inj_contra
:
∀ x0 x1 .
not
(
x0
=
x1
)
⟶
not
(
ordsucc
x0
=
ordsucc
x1
)
(proof)
Theorem
0978b..
In_0_1
:
In
0
1
(proof)
Theorem
0863e..
In_0_2
:
In
0
2
(proof)
Theorem
0a117..
In_1_2
:
In
1
2
(proof)
Theorem
e51a8..
cases_1
:
∀ x0 .
In
x0
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
(proof)
Theorem
3ad28..
cases_2
:
∀ x0 .
In
x0
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
(proof)
Theorem
416bd..
cases_3
:
∀ x0 .
In
x0
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
(proof)
Theorem
8b3d1..
cases_4
:
∀ x0 .
In
x0
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
(proof)
Theorem
2d26c..
cases_5
:
∀ x0 .
In
x0
5
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
x0
(proof)
Theorem
a05e0..
cases_6
:
∀ x0 .
In
x0
6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
x0
(proof)
Theorem
4d7f5..
cases_7
:
∀ x0 .
In
x0
7
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
x0
(proof)
Theorem
8d7d3..
cases_8
:
∀ x0 .
In
x0
8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
x0
(proof)
Theorem
1414e..
cases_9
:
∀ x0 .
In
x0
9
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
8
⟶
x1
x0
(proof)
Theorem
e3ec9..
neq_0_1
:
not
(
0
=
1
)
(proof)
Theorem
a871f..
neq_1_0
:
not
(
1
=
0
)
(proof)
Theorem
f043b..
neq_0_2
:
not
(
0
=
2
)
(proof)
Theorem
db5d7..
neq_2_0
:
not
(
2
=
0
)
(proof)
Theorem
69ac1..
neq_1_2
:
not
(
1
=
2
)
(proof)
Theorem
56778..
neq_2_1
:
not
(
2
=
1
)
(proof)
Known
b41a2..
Subq_Empty
:
∀ x0 .
Subq
0
x0
Theorem
25820..
Subq_0_0
:
Subq
0
0
(proof)
Theorem
baaef..
Subq_0_1
:
Subq
0
1
(proof)
Theorem
22aa5..
Subq_0_2
:
Subq
0
2
(proof)
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
a95bd..
Subq_1_1
:
Subq
1
1
(proof)
Theorem
a21f3..
Subq_1_2
:
Subq
1
2
(proof)
Theorem
a9130..
Subq_2_2
:
Subq
2
2
(proof)
Theorem
830d8..
Subq_1_Sing0
:
Subq
1
(
Sing
0
)
(proof)
Theorem
cdfbd..
Subq_Sing0_1
:
Subq
(
Sing
0
)
1
(proof)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
5c344..
eq_1_Sing0
:
1
=
Sing
0
(proof)
Known
69fe1..
UPairI1
:
∀ x0 x1 .
In
x0
(
UPair
x0
x1
)
Known
7477d..
UPairI2
:
∀ x0 x1 .
In
x1
(
UPair
x0
x1
)
Theorem
8fa42..
Subq_2_UPair01
:
Subq
2
(
UPair
0
1
)
(proof)
Known
7aad1..
UPairE_cases
:
∀ x0 x1 x2 .
In
x0
(
UPair
x1
x2
)
⟶
∀ x3 : ο .
(
x0
=
x1
⟶
x3
)
⟶
(
x0
=
x2
⟶
x3
)
⟶
x3
Theorem
bdcc4..
Subq_UPair01_2
:
Subq
(
UPair
0
1
)
2
(proof)
Theorem
fd6b1..
eq_2_UPair01
:
2
=
UPair
0
1
(proof)
Known
de33e..
nat_p_def
:
nat_p
=
λ x1 .
∀ x2 :
ι → ο
.
x2
0
⟶
(
∀ x3 .
x2
x3
⟶
x2
(
ordsucc
x3
)
)
⟶
x2
x1
Theorem
08405..
nat_0
:
nat_p
0
(proof)
Theorem
21479..
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
(proof)
Theorem
c7c31..
nat_1
:
nat_p
1
(proof)
Theorem
36841..
nat_2
:
nat_p
2
(proof)
Theorem
7bd16..
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
In
0
(
ordsucc
x0
)
(proof)
Theorem
840d1..
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
In
(
ordsucc
x1
)
(
ordsucc
x0
)
(proof)
Known
eb789..
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
fed08..
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
c7246..
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
92870..
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
b0a90..
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
nat_p
x1
(proof)
Known
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Theorem
80da5..
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
(proof)
Known
5f38d..
TransSet_def
:
TransSet
=
λ x1 .
∀ x2 .
In
x2
x1
⟶
Subq
x2
x1
Theorem
1358f..
nat_TransSet
:
∀ x0 .
nat_p
x0
⟶
TransSet
x0
(proof)
Known
f40a4..
ordinal_def
:
ordinal
=
λ x1 .
and
(
TransSet
x1
)
(
∀ x2 .
In
x2
x1
⟶
TransSet
x2
)
Theorem
08dfe..
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
(proof)
Theorem
8cf6a..
nat_ordsucc_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
(
ordsucc
x0
)
⟶
Subq
x1
x0
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
2109a..
UnionE2
:
∀ x0 x1 .
In
x1
(
Union
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
In
x1
x3
⟶
In
x3
x0
⟶
x2
)
⟶
x2
Known
a4d26..
UnionI
:
∀ x0 x1 x2 .
In
x1
x2
⟶
In
x2
x0
⟶
In
x1
(
Union
x0
)
Theorem
48ae5..
Union_ordsucc_eq
:
∀ x0 .
nat_p
x0
⟶
Union
(
ordsucc
x0
)
=
x0
(proof)
Theorem
82574..
In_0_3
:
In
0
3
(proof)
Theorem
f0f3e..
In_1_3
:
In
1
3
(proof)
Theorem
b5e95..
In_2_3
:
In
2
3
(proof)
Theorem
71a8d..
In_0_4
:
In
0
4
(proof)
Theorem
efe66..
In_1_4
:
In
1
4
(proof)
Theorem
884f0..
In_2_4
:
In
2
4
(proof)
Theorem
d9ca3..
In_3_4
:
In
3
4
(proof)
Theorem
5ec9a..
In_0_5
:
In
0
5
(proof)
Theorem
53692..
In_1_5
:
In
1
5
(proof)
Theorem
7f632..
In_2_5
:
In
2
5
(proof)
Theorem
c3428..
In_3_5
:
In
3
5
(proof)
Theorem
55f57..
In_4_5
:
In
4
5
(proof)
Theorem
0f549..
In_0_6
:
In
0
6
(proof)
Theorem
e5e7b..
In_1_6
:
In
1
6
(proof)
Theorem
c6359..
In_2_6
:
In
2
6
(proof)
Theorem
d5bd4..
In_3_6
:
In
3
6
(proof)
Theorem
99a7f..
In_4_6
:
In
4
6
(proof)
Theorem
ad142..
In_5_6
:
In
5
6
(proof)
Theorem
6516d..
In_0_7
:
In
0
7
(proof)
Theorem
ed9ed..
In_1_7
:
In
1
7
(proof)
Theorem
e6c7c..
In_2_7
:
In
2
7
(proof)
Theorem
dc43c..
In_3_7
:
In
3
7
(proof)
Theorem
fb74e..
In_4_7
:
In
4
7
(proof)
Theorem
59629..
In_5_7
:
In
5
7
(proof)
Theorem
14a1c..
In_6_7
:
In
6
7
(proof)
Theorem
57d5b..
In_0_8
:
In
0
8
(proof)
Theorem
4c0a3..
In_1_8
:
In
1
8
(proof)
Theorem
b8348..
In_2_8
:
In
2
8
(proof)
Theorem
ace10..
In_3_8
:
In
3
8
(proof)
Theorem
e08a8..
In_4_8
:
In
4
8
(proof)
Theorem
9ad9e..
In_5_8
:
In
5
8
(proof)
Theorem
e821f..
In_6_8
:
In
6
8
(proof)
Theorem
879be..
In_7_8
:
In
7
8
(proof)
Theorem
fda50..
In_0_9
:
In
0
9
(proof)
Theorem
9744a..
In_1_9
:
In
1
9
(proof)
Theorem
2df93..
In_2_9
:
In
2
9
(proof)
Theorem
c585f..
In_3_9
:
In
3
9
(proof)
Theorem
8ee2c..
In_4_9
:
In
4
9
(proof)
Theorem
e48d3..
In_5_9
:
In
5
9
(proof)
Theorem
35438..
In_6_9
:
In
6
9
(proof)
Theorem
3f605..
In_7_9
:
In
7
9
(proof)
Theorem
dab47..
In_8_9
:
In
8
9
(proof)
Known
3cfc3..
nIn_Empty
:
∀ x0 .
nIn
x0
0
Theorem
9dcaa..
nIn_0_0
:
nIn
0
0
(proof)
Theorem
18175..
nIn_1_0
:
nIn
1
0
(proof)
Theorem
7a610..
nIn_2_0
:
nIn
2
0
(proof)
Theorem
6e7db..
nIn_1_1
:
nIn
1
1
(proof)
Theorem
0ba24..
nIn_2_1
:
nIn
2
1
(proof)
Theorem
df31d..
nIn_2_2
:
nIn
2
2
(proof)
Known
557c1..
nSubq_def
:
nSubq
=
λ x1 x2 .
not
(
Subq
x1
x2
)
Theorem
16ddf..
nSubq_1_0
:
nSubq
1
0
(proof)
Theorem
23c6f..
nSubq_2_0
:
nSubq
2
0
(proof)
Theorem
e21f2..
nSubq_2_1
:
nSubq
2
1
(proof)