Search for blocks/addresses/...
Proofgold Asset
asset id
7080648c9d36bee369bc54a11ae94a32d9a904f42f13665009e8ce879748b5a2
asset hash
791cf6a3f8d2e8cf418aef7cde2449720c2387f0635a29061c914d85df2e0678
bday / block
1627
tx
a8b20..
preasset
doc published by
PrGxv..
Param
1ce4f..
incl_0_1
:
ι
→
ι
→
ο
Definition
00f04..
down_1_0
:=
λ x0 :
ι → ο
.
Eps_i
(
λ x1 .
1ce4f..
x1
=
x0
)
Param
Descr_Vo1
Descr_Vo1
:
(
(
ι
→
ο
) →
ο
) →
ι
→
ο
Param
407b5..
incl_1_2
:
(
ι
→
ο
) →
(
ι
→
ο
) →
ο
Definition
3e5e9..
down_2_1
:=
λ x0 :
(
ι → ο
)
→ ο
.
Descr_Vo1
(
λ x1 :
ι → ο
.
407b5..
x1
=
x0
)
Param
Descr_Vo2
Descr_Vo2
:
(
(
(
ι
→
ο
) →
ο
) →
ο
) →
(
ι
→
ο
) →
ο
Param
3a6d0..
In_2
:
(
(
ι
→
ο
) →
ο
) →
(
(
ι
→
ο
) →
ο
) →
ο
Definition
a4b00..
incl_2_3
:=
λ x0 x1 :
(
ι → ο
)
→ ο
.
3a6d0..
x1
x0
Definition
d94e6..
down_3_2
:=
λ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
Descr_Vo2
(
λ x1 :
(
ι → ο
)
→ ο
.
a4b00..
x1
=
x0
)
Param
Descr_Vo3
Descr_Vo3
:
(
(
(
(
ι
→
ο
) →
ο
) →
ο
) →
ο
) →
(
(
ι
→
ο
) →
ο
) →
ο
Param
e6217..
In_3
:
(
(
(
ι
→
ο
) →
ο
) →
ο
) →
(
(
(
ι
→
ο
) →
ο
) →
ο
) →
ο
Definition
a327b..
incl_3_4
:=
λ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x1
x0
Definition
dba53..
down_4_3
:=
λ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
Descr_Vo3
(
λ x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
a327b..
x1
=
x0
)
Known
c0781..
incl_0_1_inj
:
∀ x0 x1 .
1ce4f..
x0
=
1ce4f..
x1
⟶
x0
=
x1
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
9056c..
down_1_0_incl_0_1
:
∀ x0 .
00f04..
(
1ce4f..
x0
)
=
x0
(proof)
Known
94a3d..
incl_1_2_inj
:
∀ x0 x1 :
ι → ο
.
407b5..
x0
=
407b5..
x1
⟶
x0
=
x1
Known
Descr_Vo1_prop
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
Theorem
966b6..
down_2_1_incl_1_2
:
∀ x0 :
ι → ο
.
3e5e9..
(
407b5..
x0
)
=
x0
(proof)
Known
ea98f..
incl_2_3_inj
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
a4b00..
x0
=
a4b00..
x1
⟶
x0
=
x1
Known
Descr_Vo2_prop
Descr_Vo2_prop
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo2
x0
)
Theorem
34c81..
down_3_2_incl_2_3
:
∀ x0 :
(
ι → ο
)
→ ο
.
d94e6..
(
a4b00..
x0
)
=
x0
(proof)
Known
79850..
incl_3_4_inj
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
a327b..
x0
=
a327b..
x1
⟶
x0
=
x1
Known
Descr_Vo3_prop
Descr_Vo3_prop
:
∀ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo3
x0
)
Theorem
ef47b..
down_4_3_incl_3_4
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
dba53..
(
a327b..
x0
)
=
x0
(proof)
Definition
fb56c..
AC_1
:=
∀ x0 : ο .
(
∀ x1 :
(
(
ι → ο
)
→ ο
)
→
ι → ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x2
x3
⟶
x2
(
x1
x2
)
)
⟶
x0
)
⟶
x0
Definition
2f0a8..
AC_2
:=
∀ x0 : ο .
(
∀ x1 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x3 :
(
ι → ο
)
→ ο
.
x2
x3
⟶
x2
(
x1
x2
)
)
⟶
x0
)
⟶
x0
Definition
cfa90..
AC_3
:=
∀ x0 : ο .
(
∀ x1 :
(
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
∀ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x2
x3
⟶
x2
(
x1
x2
)
)
⟶
x0
)
⟶
x0
Known
af1a5..
In_3_E
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x0
x1
⟶
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
x1
x3
⟶
x2
(
a4b00..
x3
)
)
⟶
x2
x0
Known
7abdf..
In_3_I
:
∀ x0 :
(
ι → ο
)
→ ο
.
∀ x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x1
x0
⟶
e6217..
(
a4b00..
x0
)
x1
Theorem
03bab..
AC_3_imp_AC_2
:
cfa90..
⟶
2f0a8..
(proof)
Known
724a1..
In_2_E
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
3a6d0..
x0
x1
⟶
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x1
x3
⟶
x2
(
407b5..
x3
)
)
⟶
x2
x0
Known
5b9f0..
In_2_I
:
∀ x0 :
ι → ο
.
∀ x1 :
(
ι → ο
)
→ ο
.
x1
x0
⟶
3a6d0..
(
407b5..
x0
)
x1
Theorem
5fbe6..
AC_2_imp_AC_1
:
2f0a8..
⟶
fb56c..
(proof)
Theorem
99a65..
Skolem_0
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 .
∀ x2 : ο .
(
∀ x3 .
x0
x1
x3
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι → ι
.
(
∀ x3 .
x0
x3
(
x2
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
3c207..
Skolem_0_bdd
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 .
x1
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 .
In
x4
x0
⟶
x1
x4
(
x3
x4
)
)
⟶
x2
)
⟶
x2
(proof)
Theorem
1b7fa..
Skolem_1
:
fb56c..
⟶
∀ x0 :
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 :
ι → ο
.
∀ x2 : ο .
(
∀ x3 :
ι → ο
.
x0
x1
x3
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
(
ι → ο
)
→
ι → ο
.
(
∀ x3 :
ι → ο
.
x0
x3
(
x2
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Param
d97e3..
In_1
:
(
ι
→
ο
) →
(
ι
→
ο
) →
ο
Theorem
3a35b..
Skolem_1_bdd
:
fb56c..
⟶
∀ x0 :
ι → ο
.
∀ x1 :
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x2 :
ι → ο
.
d97e3..
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
x1
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x2 : ο .
(
∀ x3 :
(
ι → ο
)
→
ι → ο
.
(
∀ x4 :
ι → ο
.
d97e3..
x4
x0
⟶
x1
x4
(
x3
x4
)
)
⟶
x2
)
⟶
x2
(proof)
Theorem
c57b9..
Skolem_2
:
2f0a8..
⟶
∀ x0 :
(
(
ι → ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 : ο .
(
∀ x3 :
(
ι → ο
)
→ ο
.
x0
x1
x3
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
x0
x3
(
x2
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
aa5c0..
Skolem_2_bdd
:
2f0a8..
⟶
∀ x0 :
(
ι → ο
)
→ ο
.
∀ x1 :
(
(
ι → ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x2 :
(
ι → ο
)
→ ο
.
3a6d0..
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 :
(
ι → ο
)
→ ο
.
x1
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x2 : ο .
(
∀ x3 :
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
3a6d0..
x4
x0
⟶
x1
x4
(
x3
x4
)
)
⟶
x2
)
⟶
x2
(proof)
Theorem
42514..
Skolem_3
:
cfa90..
⟶
∀ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x2 : ο .
(
∀ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x1
x3
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x3
(
x2
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
7e268..
Skolem_3_bdd
:
cfa90..
⟶
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x1
x2
x4
⟶
x3
)
⟶
x3
)
⟶
∀ x2 : ο .
(
∀ x3 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x4
x0
⟶
x1
x4
(
x3
x4
)
)
⟶
x2
)
⟶
x2
(proof)