Search for blocks/addresses/...
Proofgold Asset
asset id
70edb82b4d52aedb12b8971f69d5229b8e1cee1639c0ec2df48a911884c6812b
asset hash
bc961801d70181c57f098e5770b5c4db4ef66756fd25b98742fe0d639f0ae638
bday / block
27290
tx
007b5..
preasset
doc published by
Pr5Zc..
Param
nat_p
nat_p
:
ι
→
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
4d87b..
:
∀ x0 x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Theorem
2bbf0..
mul_nat_0_or_Subq
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
or
(
x1
=
0
)
(
x0
⊆
mul_nat
x0
x1
)
(proof)
Theorem
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
7be16..
:
∀ x0 :
ι → ο
.
x0
0
⟶
x0
1
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
(
ordsucc
x1
)
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
054a4..
:
∀ x0 :
ι → ο
.
x0
0
⟶
x0
1
⟶
x0
2
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
(
ordsucc
(
ordsucc
x1
)
)
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
3fa1a..
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
0
⟶
and
(
x0
=
0
)
(
x1
=
0
)
(proof)
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Theorem
c89ba..
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
x1
⟶
x0
=
0
(proof)
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Theorem
75048..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x1
x0
=
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
x0
=
1
(proof)
Param
omega
omega
:
ι
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
mul_nat_com
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Known
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
ordinal_1
ordinal_1
:
ordinal
1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
Empty_Subq_eq
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
Known
mul_nat_0L
mul_nat_0L
:
∀ x0 .
nat_p
x0
⟶
mul_nat
0
x0
=
0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
b8d2f..
:
∀ x0 .
x0
∈
omega
⟶
not
(
prime_nat
x0
)
⟶
1
∈
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
1
∈
x2
⟶
1
∈
x3
⟶
x0
=
mul_nat
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
add_SNo_minus_Lt2
add_SNo_minus_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_0
SNo_0
:
SNo
0
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
SNo_1
SNo_1
:
SNo
1
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_minus_Lt2b
add_SNo_minus_Lt2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Theorem
58a75..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
0
∈
x0
⟶
1
∈
x1
⟶
x0
∈
mul_nat
x0
x1
(proof)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
7d1f8..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
1
∈
x0
⟶
1
∈
x1
⟶
and
(
x0
∈
mul_nat
x0
x1
)
(
x1
∈
mul_nat
x0
x1
)
(proof)
Known
25618..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
(
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
)
Known
88d93..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x0
x5
⟶
x0
(
x4
x5
)
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
(
x4
x5
)
=
x5
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
(
x4
x5
)
(
x1
x5
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
x5
(
x1
(
x4
x5
)
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
(
x4
x5
)
x6
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
(
x4
x6
)
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
(
∀ x5 x6 x7 x8 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x2
x5
x6
)
(
x2
x7
x8
)
=
x2
(
x2
x5
x7
)
(
x2
x6
x8
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x2
(
x1
(
x3
x5
)
(
x1
(
x3
x6
)
(
x1
(
x3
x7
)
(
x3
x8
)
)
)
)
(
x1
(
x3
x9
)
(
x1
(
x3
x10
)
(
x1
(
x3
x11
)
(
x3
x12
)
)
)
)
=
x1
(
x3
(
x1
(
x2
x5
x10
)
(
x1
(
x2
x6
x9
)
(
x1
(
x2
x7
x12
)
(
x4
(
x2
x8
x11
)
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x11
)
(
x1
(
x4
(
x2
x6
x12
)
)
(
x1
(
x2
x7
x9
)
(
x2
x8
x10
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x12
)
(
x1
(
x2
x6
x11
)
(
x1
(
x4
(
x2
x7
x10
)
)
(
x2
x8
x9
)
)
)
)
)
(
x3
(
x1
(
x2
x5
x9
)
(
x1
(
x4
(
x2
x6
x10
)
)
(
x1
(
x4
(
x2
x7
x11
)
)
(
x4
(
x2
x8
x12
)
)
)
)
)
)
)
)
Theorem
41130..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x0
x5
⟶
x0
(
x4
x5
)
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
(
x4
x5
)
=
x5
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
(
x4
x5
)
(
x1
x5
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
x5
(
x1
(
x4
x5
)
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
(
x4
x5
)
x6
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
(
x4
x6
)
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
(
∀ x5 x6 x7 x8 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x2
x5
x6
)
(
x2
x7
x8
)
=
x2
(
x2
x5
x7
)
(
x2
x6
x8
)
)
⟶
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
∀ x7 x8 x9 x10 .
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x5
=
x1
(
x3
x7
)
(
x1
(
x3
x8
)
(
x1
(
x3
x9
)
(
x3
x10
)
)
)
⟶
∀ x11 x12 x13 x14 .
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x6
=
x1
(
x3
x11
)
(
x1
(
x3
x12
)
(
x1
(
x3
x13
)
(
x3
x14
)
)
)
⟶
∀ x15 : ο .
(
∀ x16 x17 x18 x19 .
x0
x16
⟶
x0
x17
⟶
x0
x18
⟶
x0
x19
⟶
x2
x5
x6
=
x1
(
x3
x16
)
(
x1
(
x3
x17
)
(
x1
(
x3
x18
)
(
x3
x19
)
)
)
⟶
x15
)
⟶
x15
(proof)
Theorem
277a1..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x0
x5
⟶
x0
(
x4
x5
)
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
(
x4
x5
)
=
x5
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
(
x4
x5
)
(
x1
x5
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
x5
(
x1
(
x4
x5
)
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
(
x4
x5
)
x6
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
(
x4
x6
)
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
(
∀ x5 x6 x7 x8 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x2
x5
x6
)
(
x2
x7
x8
)
=
x2
(
x2
x5
x7
)
(
x2
x6
x8
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x0
x6
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x5
x8
)
(
x3
x8
=
x3
x6
)
⟶
x7
)
⟶
x7
)
⟶
∀ x6 x7 .
x0
x6
⟶
x0
x7
⟶
∀ x8 x9 x10 x11 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x6
=
x1
(
x3
x8
)
(
x1
(
x3
x9
)
(
x1
(
x3
x10
)
(
x3
x11
)
)
)
⟶
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x7
=
x1
(
x3
x12
)
(
x1
(
x3
x13
)
(
x1
(
x3
x14
)
(
x3
x15
)
)
)
⟶
∀ x16 : ο .
(
∀ x17 x18 x19 x20 .
x5
x17
⟶
x5
x18
⟶
x5
x19
⟶
x5
x20
⟶
x2
x6
x7
=
x1
(
x3
x17
)
(
x1
(
x3
x18
)
(
x1
(
x3
x19
)
(
x3
x20
)
)
)
⟶
x16
)
⟶
x16
(proof)
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Theorem
634fb..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 x3 x4 x5 .
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
x0
=
add_SNo
(
mul_SNo
x2
x2
)
(
add_SNo
(
mul_SNo
x3
x3
)
(
add_SNo
(
mul_SNo
x4
x4
)
(
mul_SNo
x5
x5
)
)
)
⟶
∀ x6 x7 x8 x9 .
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
x1
=
add_SNo
(
mul_SNo
x6
x6
)
(
add_SNo
(
mul_SNo
x7
x7
)
(
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
x9
x9
)
)
)
⟶
∀ x10 : ο .
(
∀ x11 x12 x13 x14 .
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
mul_SNo
x0
x1
=
add_SNo
(
mul_SNo
x11
x11
)
(
add_SNo
(
mul_SNo
x12
x12
)
(
add_SNo
(
mul_SNo
x13
x13
)
(
mul_SNo
x14
x14
)
)
)
⟶
x10
)
⟶
x10
(proof)
Param
int
int
:
ι
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Theorem
d6e7f..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
∀ x4 .
x4
∈
int
⟶
∀ x5 .
x5
∈
int
⟶
x0
=
add_SNo
(
mul_SNo
x2
x2
)
(
add_SNo
(
mul_SNo
x3
x3
)
(
add_SNo
(
mul_SNo
x4
x4
)
(
mul_SNo
x5
x5
)
)
)
⟶
∀ x6 .
x6
∈
int
⟶
∀ x7 .
x7
∈
int
⟶
∀ x8 .
x8
∈
int
⟶
∀ x9 .
x9
∈
int
⟶
x1
=
add_SNo
(
mul_SNo
x6
x6
)
(
add_SNo
(
mul_SNo
x7
x7
)
(
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
x9
x9
)
)
)
⟶
∀ x10 : ο .
(
∀ x11 .
x11
∈
int
⟶
∀ x12 .
x12
∈
int
⟶
∀ x13 .
x13
∈
int
⟶
∀ x14 .
x14
∈
int
⟶
mul_SNo
x0
x1
=
add_SNo
(
mul_SNo
x11
x11
)
(
add_SNo
(
mul_SNo
x12
x12
)
(
add_SNo
(
mul_SNo
x13
x13
)
(
mul_SNo
x14
x14
)
)
)
⟶
x10
)
⟶
x10
(proof)
Known
int_SNo_cases
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int
⟶
x0
x1
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
c6211..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
∀ x4 .
x4
∈
int
⟶
∀ x5 .
x5
∈
int
⟶
x0
=
add_SNo
(
mul_SNo
x2
x2
)
(
add_SNo
(
mul_SNo
x3
x3
)
(
add_SNo
(
mul_SNo
x4
x4
)
(
mul_SNo
x5
x5
)
)
)
⟶
∀ x6 .
x6
∈
int
⟶
∀ x7 .
x7
∈
int
⟶
∀ x8 .
x8
∈
int
⟶
∀ x9 .
x9
∈
int
⟶
x1
=
add_SNo
(
mul_SNo
x6
x6
)
(
add_SNo
(
mul_SNo
x7
x7
)
(
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
x9
x9
)
)
)
⟶
∀ x10 : ο .
(
∀ x11 .
x11
∈
omega
⟶
∀ x12 .
x12
∈
omega
⟶
∀ x13 .
x13
∈
omega
⟶
∀ x14 .
x14
∈
omega
⟶
mul_SNo
x0
x1
=
add_SNo
(
mul_SNo
x11
x11
)
(
add_SNo
(
mul_SNo
x12
x12
)
(
add_SNo
(
mul_SNo
x13
x13
)
(
mul_SNo
x14
x14
)
)
)
⟶
x10
)
⟶
x10
(proof)