Search for blocks/addresses/...
Proofgold Asset
asset id
711f9ee7d2e646a7f81a006490137ff98368ca59de2dd3ebfd2a73651726167e
asset hash
ba6130f0e41208a3f9f5a3ba6faec9793d573edc5f5ff700643588b1e1e0bf5a
bday / block
12443
tx
a9b67..
preasset
doc published by
PrGxv..
Param
real
real
:
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
SNoS_
SNoS_
:
ι
→
ι
Param
omega
omega
:
ι
Known
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
Known
omega_SNoS_omega
omega_SNoS_omega
:
omega
⊆
SNoS_
omega
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Theorem
real_0
real_0
:
0
∈
real
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_1
nat_1
:
nat_p
1
Theorem
real_1
real_1
:
1
∈
real
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
int_alt1
int
:
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Definition
diadic_rational_alt1_p
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
int_alt1
)
(
x0
=
mul_SNo
(
eps_
x2
)
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
a3283..
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int_alt1
⟶
x0
x1
Known
nonneg_diadic_rational_p_SNoS_omega
nonneg_diadic_rational_p_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
nat_p
x1
⟶
mul_SNo
(
eps_
x0
)
x1
∈
SNoS_
omega
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Param
SNo
SNo
:
ι
→
ο
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
Theorem
f05cb..
:
∀ x0 .
diadic_rational_alt1_p
x0
⟶
x0
∈
SNoS_
omega
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Theorem
455b5..
:
∀ x0 .
diadic_rational_alt1_p
x0
⟶
SNo
x0
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
eps_0_1
eps_0_1
:
eps_
0
=
1
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
0c7a0..
:
∀ x0 .
x0
∈
int_alt1
⟶
SNo
x0
Theorem
a08ea..
:
∀ x0 .
x0
∈
int_alt1
⟶
diadic_rational_alt1_p
x0
(proof)
Known
c3d99..
Subq_omega_int
:
omega
⊆
int_alt1
Theorem
a89df..
:
∀ x0 .
x0
∈
omega
⟶
diadic_rational_alt1_p
x0
(proof)
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Theorem
5042a..
:
∀ x0 .
x0
∈
omega
⟶
diadic_rational_alt1_p
(
eps_
x0
)
(proof)
Known
daaad..
int_minus_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
minus_SNo
x0
∈
int_alt1
Theorem
3801d..
:
∀ x0 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
(
minus_SNo
x0
)
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
eefdf..
int_mul_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
∀ x1 .
x1
∈
int_alt1
⟶
mul_SNo
x0
x1
∈
int_alt1
Known
mul_SNo_eps_eps_add_SNo
mul_SNo_eps_eps_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
(
eps_
x0
)
(
eps_
x1
)
=
eps_
(
add_SNo
x0
x1
)
Known
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Theorem
858c0..
:
∀ x0 x1 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
x1
⟶
diadic_rational_alt1_p
(
mul_SNo
x0
x1
)
(proof)
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Known
a0aa5..
int_add_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
∀ x1 .
x1
∈
int_alt1
⟶
add_SNo
x0
x1
∈
int_alt1
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_eps_power_2
mul_SNo_eps_power_2
:
∀ x0 .
nat_p
x0
⟶
mul_SNo
(
eps_
x0
)
(
exp_SNo_nat
2
x0
)
=
1
Known
nat_exp_SNo_nat
nat_exp_SNo_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Theorem
9e46f..
:
∀ x0 x1 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
x1
⟶
diadic_rational_alt1_p
(
add_SNo
x0
x1
)
(proof)