Search for blocks/addresses/...

Proofgold Asset

asset id
72f35b0f11040fa6b5ca6c88f47ac31498afa1dd196d4c945672351c579d22dc
asset hash
cd9b18b0fc74e143548b81596f240ed3b92a305370b776bf64669bd7c4e0396b
bday / block
36378
tx
83052..
preasset
doc published by PrCmT..
Known df_trls__df_trlson__df_pths__df_spths__df_pthson__df_spthson__df_clwlks__df_crcts__df_cycls__df_wwlks__df_wwlksn__df_wwlksnon__df_wspthsn__df_wspthsnon__df_clwwlk__df_clwwlkn__df_clwwlknOLD__df_clwwlknon : ∀ x0 : ο . (wceq ctrls (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wbr (cv x2) (cv x3) (cfv (cv x1) cwlks)) (wfun (ccnv (cv x2))))))wceq ctrlson (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . copab (λ x4 x5 . wa (wbr (cv x4) (cv x5) (co (cv x2) (cv x3) (cfv (cv x1) cwlkson))) (wbr (cv x4) (cv x5) (cfv (cv x1) ctrls))))))wceq cpths (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . w3a (wbr (cv x2) (cv x3) (cfv (cv x1) ctrls)) (wfun (ccnv (cres (cv x3) (co c1 (cfv (cv x2) chash) cfzo)))) (wceq (cin (cima (cv x3) (cpr cc0 (cfv (cv x2) chash))) (cima (cv x3) (co c1 (cfv (cv x2) chash) cfzo))) c0))))wceq cspths (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wbr (cv x2) (cv x3) (cfv (cv x1) ctrls)) (wfun (ccnv (cv x3))))))wceq cpthson (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . copab (λ x4 x5 . wa (wbr (cv x4) (cv x5) (co (cv x2) (cv x3) (cfv (cv x1) ctrlson))) (wbr (cv x4) (cv x5) (cfv (cv x1) cpths))))))wceq cspthson (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . copab (λ x4 x5 . wa (wbr (cv x4) (cv x5) (co (cv x2) (cv x3) (cfv (cv x1) ctrlson))) (wbr (cv x4) (cv x5) (cfv (cv x1) cspths))))))wceq cclwlks (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wbr (cv x2) (cv x3) (cfv (cv x1) cwlks)) (wceq (cfv cc0 (cv x3)) (cfv (cfv (cv x2) chash) (cv x3))))))wceq ccrcts (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wbr (cv x2) (cv x3) (cfv (cv x1) ctrls)) (wceq (cfv cc0 (cv x3)) (cfv (cfv (cv x2) chash) (cv x3))))))wceq ccycls (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wbr (cv x2) (cv x3) (cfv (cv x1) cpths)) (wceq (cfv cc0 (cv x3)) (cfv (cfv (cv x2) chash) (cv x3))))))wceq cwwlks (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wne (cv x2) c0) (wral (λ x3 . wcel (cpr (cfv (cv x3) (cv x2)) (cfv (co (cv x3) c1 caddc) (cv x2))) (cfv (cv x1) cedg)) (λ x3 . co cc0 (co (cfv (cv x2) chash) c1 cmin) cfzo))) (λ x2 . cword (cfv (cv x1) cvtx))))wceq cwwlksn (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wceq (cfv (cv x3) chash) (co (cv x1) c1 caddc)) (λ x3 . cfv (cv x2) cwwlks)))wceq cwwlksnon (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . cmpt2 (λ x3 x4 . cfv (cv x2) cvtx) (λ x3 x4 . cfv (cv x2) cvtx) (λ x3 x4 . crab (λ x5 . wa (wceq (cfv cc0 (cv x5)) (cv x3)) (wceq (cfv (cv x1) (cv x5)) (cv x4))) (λ x5 . co (cv x1) (cv x2) cwwlksn))))wceq cwwspthsn (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wex (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x2) cspths))) (λ x3 . co (cv x1) (cv x2) cwwlksn)))wceq cwwspthsnon (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . cmpt2 (λ x3 x4 . cfv (cv x2) cvtx) (λ x3 x4 . cfv (cv x2) cvtx) (λ x3 x4 . crab (λ x5 . wex (λ x6 . wbr (cv x6) (cv x5) (co (cv x3) (cv x4) (cfv (cv x2) cspthson)))) (λ x5 . co (cv x3) (cv x4) (co (cv x1) (cv x2) cwwlksnon)))))wceq cclwwlk (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . w3a (wne (cv x2) c0) (wral (λ x3 . wcel (cpr (cfv (cv x3) (cv x2)) (cfv (co (cv x3) c1 caddc) (cv x2))) (cfv (cv x1) cedg)) (λ x3 . co cc0 (co (cfv (cv x2) chash) c1 cmin) cfzo)) (wcel (cpr (cfv (cv x2) clsw) (cfv cc0 (cv x2))) (cfv (cv x1) cedg))) (λ x2 . cword (cfv (cv x1) cvtx))))wceq cclwwlkn (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wceq (cfv (cv x3) chash) (cv x1)) (λ x3 . cfv (cv x2) cclwwlk)))wceq cclwwlknold (cmpt2 (λ x1 x2 . cn) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wceq (cfv (cv x3) chash) (cv x1)) (λ x3 . cfv (cv x2) cclwwlk)))wceq cclwwlknon (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cn0) (λ x2 x3 . crab (λ x4 . wceq (cfv cc0 (cv x4)) (cv x2)) (λ x4 . co (cv x3) (cv x1) cclwwlkn))))x0)x0
Theorem df_trls : wceq ctrls (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wbr (cv x1) (cv x2) (cfv (cv x0) cwlks)) (wfun (ccnv (cv x1)))))) (proof)
Theorem df_trlson : wceq ctrlson (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . copab (λ x3 x4 . wa (wbr (cv x3) (cv x4) (co (cv x1) (cv x2) (cfv (cv x0) cwlkson))) (wbr (cv x3) (cv x4) (cfv (cv x0) ctrls)))))) (proof)
Theorem df_pths : wceq cpths (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . w3a (wbr (cv x1) (cv x2) (cfv (cv x0) ctrls)) (wfun (ccnv (cres (cv x2) (co c1 (cfv (cv x1) chash) cfzo)))) (wceq (cin (cima (cv x2) (cpr cc0 (cfv (cv x1) chash))) (cima (cv x2) (co c1 (cfv (cv x1) chash) cfzo))) c0)))) (proof)
Theorem df_spths : wceq cspths (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wbr (cv x1) (cv x2) (cfv (cv x0) ctrls)) (wfun (ccnv (cv x2)))))) (proof)
Theorem df_pthson : wceq cpthson (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . copab (λ x3 x4 . wa (wbr (cv x3) (cv x4) (co (cv x1) (cv x2) (cfv (cv x0) ctrlson))) (wbr (cv x3) (cv x4) (cfv (cv x0) cpths)))))) (proof)
Theorem df_spthson : wceq cspthson (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . copab (λ x3 x4 . wa (wbr (cv x3) (cv x4) (co (cv x1) (cv x2) (cfv (cv x0) ctrlson))) (wbr (cv x3) (cv x4) (cfv (cv x0) cspths)))))) (proof)
Theorem df_clwlks : wceq cclwlks (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wbr (cv x1) (cv x2) (cfv (cv x0) cwlks)) (wceq (cfv cc0 (cv x2)) (cfv (cfv (cv x1) chash) (cv x2)))))) (proof)
Theorem df_crcts : wceq ccrcts (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wbr (cv x1) (cv x2) (cfv (cv x0) ctrls)) (wceq (cfv cc0 (cv x2)) (cfv (cfv (cv x1) chash) (cv x2)))))) (proof)
Theorem df_cycls : wceq ccycls (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wa (wbr (cv x1) (cv x2) (cfv (cv x0) cpths)) (wceq (cfv cc0 (cv x2)) (cfv (cfv (cv x1) chash) (cv x2)))))) (proof)
Theorem df_wwlks : wceq cwwlks (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wa (wne (cv x1) c0) (wral (λ x2 . wcel (cpr (cfv (cv x2) (cv x1)) (cfv (co (cv x2) c1 caddc) (cv x1))) (cfv (cv x0) cedg)) (λ x2 . co cc0 (co (cfv (cv x1) chash) c1 cmin) cfzo))) (λ x1 . cword (cfv (cv x0) cvtx)))) (proof)
Theorem df_wwlksn : wceq cwwlksn (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wceq (cfv (cv x2) chash) (co (cv x0) c1 caddc)) (λ x2 . cfv (cv x1) cwwlks))) (proof)
Theorem df_wwlksnon : wceq cwwlksnon (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . crab (λ x4 . wa (wceq (cfv cc0 (cv x4)) (cv x2)) (wceq (cfv (cv x0) (cv x4)) (cv x3))) (λ x4 . co (cv x0) (cv x1) cwwlksn)))) (proof)
Theorem df_wspthsn : wceq cwwspthsn (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wex (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x1) cspths))) (λ x2 . co (cv x0) (cv x1) cwwlksn))) (proof)
Theorem df_wspthsnon : wceq cwwspthsnon (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . cfv (cv x1) cvtx) (λ x2 x3 . crab (λ x4 . wex (λ x5 . wbr (cv x5) (cv x4) (co (cv x2) (cv x3) (cfv (cv x1) cspthson)))) (λ x4 . co (cv x2) (cv x3) (co (cv x0) (cv x1) cwwlksnon))))) (proof)
Theorem df_clwwlk : wceq cclwwlk (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . w3a (wne (cv x1) c0) (wral (λ x2 . wcel (cpr (cfv (cv x2) (cv x1)) (cfv (co (cv x2) c1 caddc) (cv x1))) (cfv (cv x0) cedg)) (λ x2 . co cc0 (co (cfv (cv x1) chash) c1 cmin) cfzo)) (wcel (cpr (cfv (cv x1) clsw) (cfv cc0 (cv x1))) (cfv (cv x0) cedg))) (λ x1 . cword (cfv (cv x0) cvtx)))) (proof)
Theorem df_clwwlkn : wceq cclwwlkn (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wceq (cfv (cv x2) chash) (cv x0)) (λ x2 . cfv (cv x1) cclwwlk))) (proof)
Theorem df_clwwlknOLD : wceq cclwwlknold (cmpt2 (λ x0 x1 . cn) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wceq (cfv (cv x2) chash) (cv x0)) (λ x2 . cfv (cv x1) cclwwlk))) (proof)
Theorem df_clwwlknon : wceq cclwwlknon (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cvtx) (λ x1 x2 . cn0) (λ x1 x2 . crab (λ x3 . wceq (cfv cc0 (cv x3)) (cv x1)) (λ x3 . co (cv x2) (cv x0) cclwwlkn)))) (proof)