Search for blocks/addresses/...
Proofgold Asset
asset id
27603ca015a8911a30e3947c79e296e69825f928c631f9b9e7a1e6e1fabc8207
asset hash
752ebab0b6a39583cf73bfee71312a7e03a913a6bb3e33bf206afc8df3598bb3
bday / block
4654
tx
db9a4..
preasset
doc published by
PrGxv..
Definition
canonical_elt
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
prim0
(
x0
x1
)
Known
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Theorem
canonical_elt_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
⟶
x0
x1
(
canonical_elt
x0
x1
)
(proof)
Param
per
:
(
ι
→
ι
→
ο
) →
ο
Known
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
per_stra1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x2
x1
⟶
x0
x2
x3
⟶
x0
x1
x3
Definition
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Known
per_tra
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
transitive
x0
Theorem
canonical_elt_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
x2
(proof)
Theorem
canonical_elt_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 .
x0
x1
x1
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
(
canonical_elt
x0
x1
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
quotient
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
and
(
x0
x1
x1
)
(
x1
=
canonical_elt
x0
x1
)
Known
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
quotient_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
quotient
x0
x1
⟶
x0
x1
x1
(proof)
Known
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
quotient_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
quotient
x0
x1
⟶
quotient
x0
x2
⟶
x0
x1
x2
⟶
x1
=
x2
(proof)
Param
If_i
:
ο
→
ι
→
ι
→
ι
Definition
canonical_elt_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
If_i
(
x0
x2
(
x1
x2
)
)
(
x1
x2
)
(
canonical_elt
x0
x2
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
Theorem
canonical_elt_def_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
x2
⟶
x0
x2
(
canonical_elt_def
x0
x1
x2
)
(proof)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
canonical_elt_def_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
x0
x2
x3
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
x3
(proof)
Theorem
canonical_elt_def_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 .
x0
x2
x2
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
(
canonical_elt_def
x0
x1
x2
)
(proof)
Definition
quotient_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
and
(
x0
x2
x2
)
(
x2
=
canonical_elt_def
x0
x1
x2
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
per_ref1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
x0
x1
x1
Theorem
quotient_def_prop0
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
(
x1
x2
)
⟶
x2
=
x1
x2
⟶
quotient_def
x0
x1
x2
(proof)
Theorem
quotient_def_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
quotient_def
x0
x1
x2
⟶
x0
x2
x2
(proof)
Theorem
quotient_def_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
quotient_def
x0
x1
x2
⟶
quotient_def
x0
x1
x3
⟶
x0
x2
x3
⟶
x2
=
x3
(proof)