Search for blocks/addresses/...

Proofgold Asset

asset id
75f17c4f457f6c6bf13b849e1d9e955763f1cb2d7e39eebedada9efdfab30245
asset hash
2dea9b7e246de6e8e08fb04f3cae2904a67a816d6897fa459f279077045b61e6
bday / block
36397
tx
96135..
preasset
doc published by PrCmT..
Known df_mr__df_ltr__df_0r__df_1r__df_m1r__df_c__df_0__df_1__df_i__df_r__df_add__df_mul__df_lt__df_pnf__df_mnf__df_xr__df_ltxr__df_le : ∀ x0 : ο . (wceq cmr (coprab (λ x1 x2 x3 . wa (wa (wcel (cv x1) cnr) (wcel (cv x2) cnr)) (wex (λ x4 . wex (λ x5 . wex (λ x6 . wex (λ x7 . wa (wa (wceq (cv x1) (cec (cop (cv x4) (cv x5)) cer)) (wceq (cv x2) (cec (cop (cv x6) (cv x7)) cer))) (wceq (cv x3) (cec (cop (co (co (cv x4) (cv x6) cmp) (co (cv x5) (cv x7) cmp) cpp) (co (co (cv x4) (cv x7) cmp) (co (cv x5) (cv x6) cmp) cpp)) cer)))))))))wceq cltr (copab (λ x1 x2 . wa (wa (wcel (cv x1) cnr) (wcel (cv x2) cnr)) (wex (λ x3 . wex (λ x4 . wex (λ x5 . wex (λ x6 . wa (wa (wceq (cv x1) (cec (cop (cv x3) (cv x4)) cer)) (wceq (cv x2) (cec (cop (cv x5) (cv x6)) cer))) (wbr (co (cv x3) (cv x6) cpp) (co (cv x4) (cv x5) cpp) cltp))))))))wceq c0r (cec (cop c1p c1p) cer)wceq c1r (cec (cop (co c1p c1p cpp) c1p) cer)wceq cm1r (cec (cop c1p (co c1p c1p cpp)) cer)wceq cc (cxp cnr cnr)wceq cc0 (cop c0r c0r)wceq c1 (cop c1r c0r)wceq ci (cop c0r c1r)wceq cr (cxp cnr (csn c0r))wceq caddc (coprab (λ x1 x2 x3 . wa (wa (wcel (cv x1) cc) (wcel (cv x2) cc)) (wex (λ x4 . wex (λ x5 . wex (λ x6 . wex (λ x7 . wa (wa (wceq (cv x1) (cop (cv x4) (cv x5))) (wceq (cv x2) (cop (cv x6) (cv x7)))) (wceq (cv x3) (cop (co (cv x4) (cv x6) cplr) (co (cv x5) (cv x7) cplr))))))))))wceq cmul (coprab (λ x1 x2 x3 . wa (wa (wcel (cv x1) cc) (wcel (cv x2) cc)) (wex (λ x4 . wex (λ x5 . wex (λ x6 . wex (λ x7 . wa (wa (wceq (cv x1) (cop (cv x4) (cv x5))) (wceq (cv x2) (cop (cv x6) (cv x7)))) (wceq (cv x3) (cop (co (co (cv x4) (cv x6) cmr) (co cm1r (co (cv x5) (cv x7) cmr) cmr) cplr) (co (co (cv x5) (cv x6) cmr) (co (cv x4) (cv x7) cmr) cplr))))))))))wceq cltrr (copab (λ x1 x2 . wa (wa (wcel (cv x1) cr) (wcel (cv x2) cr)) (wex (λ x3 . wex (λ x4 . wa (wa (wceq (cv x1) (cop (cv x3) c0r)) (wceq (cv x2) (cop (cv x4) c0r))) (wbr (cv x3) (cv x4) cltr))))))wceq cpnf (cpw (cuni cc))wceq cmnf (cpw cpnf)wceq cxr (cun cr (cpr cpnf cmnf))wceq clt (cun (copab (λ x1 x2 . w3a (wcel (cv x1) cr) (wcel (cv x2) cr) (wbr (cv x1) (cv x2) cltrr))) (cun (cxp (cun cr (csn cmnf)) (csn cpnf)) (cxp (csn cmnf) cr)))wceq cle (cdif (cxp cxr cxr) (ccnv clt))x0)x0
Theorem df_mr : wceq cmr (coprab (λ x0 x1 x2 . wa (wa (wcel (cv x0) cnr) (wcel (cv x1) cnr)) (wex (λ x3 . wex (λ x4 . wex (λ x5 . wex (λ x6 . wa (wa (wceq (cv x0) (cec (cop (cv x3) (cv x4)) cer)) (wceq (cv x1) (cec (cop (cv x5) (cv x6)) cer))) (wceq (cv x2) (cec (cop (co (co (cv x3) (cv x5) cmp) (co (cv x4) (cv x6) cmp) cpp) (co (co (cv x3) (cv x6) cmp) (co (cv x4) (cv x5) cmp) cpp)) cer))))))))) (proof)
Theorem df_ltr : wceq cltr (copab (λ x0 x1 . wa (wa (wcel (cv x0) cnr) (wcel (cv x1) cnr)) (wex (λ x2 . wex (λ x3 . wex (λ x4 . wex (λ x5 . wa (wa (wceq (cv x0) (cec (cop (cv x2) (cv x3)) cer)) (wceq (cv x1) (cec (cop (cv x4) (cv x5)) cer))) (wbr (co (cv x2) (cv x5) cpp) (co (cv x3) (cv x4) cpp) cltp)))))))) (proof)
Theorem df_0r : wceq c0r (cec (cop c1p c1p) cer) (proof)
Theorem df_1r : wceq c1r (cec (cop (co c1p c1p cpp) c1p) cer) (proof)
Theorem df_m1r : wceq cm1r (cec (cop c1p (co c1p c1p cpp)) cer) (proof)
Theorem df_c : wceq cc (cxp cnr cnr) (proof)
Theorem df_0 : wceq cc0 (cop c0r c0r) (proof)
Theorem df_1 : wceq c1 (cop c1r c0r) (proof)
Theorem df_i : wceq ci (cop c0r c1r) (proof)
Theorem df_r : wceq cr (cxp cnr (csn c0r)) (proof)
Theorem df_add : wceq caddc (coprab (λ x0 x1 x2 . wa (wa (wcel (cv x0) cc) (wcel (cv x1) cc)) (wex (λ x3 . wex (λ x4 . wex (λ x5 . wex (λ x6 . wa (wa (wceq (cv x0) (cop (cv x3) (cv x4))) (wceq (cv x1) (cop (cv x5) (cv x6)))) (wceq (cv x2) (cop (co (cv x3) (cv x5) cplr) (co (cv x4) (cv x6) cplr)))))))))) (proof)
Theorem df_mul : wceq cmul (coprab (λ x0 x1 x2 . wa (wa (wcel (cv x0) cc) (wcel (cv x1) cc)) (wex (λ x3 . wex (λ x4 . wex (λ x5 . wex (λ x6 . wa (wa (wceq (cv x0) (cop (cv x3) (cv x4))) (wceq (cv x1) (cop (cv x5) (cv x6)))) (wceq (cv x2) (cop (co (co (cv x3) (cv x5) cmr) (co cm1r (co (cv x4) (cv x6) cmr) cmr) cplr) (co (co (cv x4) (cv x5) cmr) (co (cv x3) (cv x6) cmr) cplr)))))))))) (proof)
Theorem df_lt : wceq cltrr (copab (λ x0 x1 . wa (wa (wcel (cv x0) cr) (wcel (cv x1) cr)) (wex (λ x2 . wex (λ x3 . wa (wa (wceq (cv x0) (cop (cv x2) c0r)) (wceq (cv x1) (cop (cv x3) c0r))) (wbr (cv x2) (cv x3) cltr)))))) (proof)
Theorem df_pnf : wceq cpnf (cpw (cuni cc)) (proof)
Theorem df_mnf : wceq cmnf (cpw cpnf) (proof)
Theorem df_xr : wceq cxr (cun cr (cpr cpnf cmnf)) (proof)
Theorem df_ltxr : wceq clt (cun (copab (λ x0 x1 . w3a (wcel (cv x0) cr) (wcel (cv x1) cr) (wbr (cv x0) (cv x1) cltrr))) (cun (cxp (cun cr (csn cmnf)) (csn cpnf)) (cxp (csn cmnf) cr))) (proof)
Theorem df_le : wceq cle (cdif (cxp cxr cxr) (ccnv clt)) (proof)