Search for blocks/addresses/...
Proofgold Asset
asset id
77fee0b4218ef0f47c40913daf4a1a2032ff1bdfdce36bdb09f52ac565ae165b
asset hash
3f14a0fcd4b6369e994f35844e1fa943c11635f2d39419ee0a1255c8279e98a4
bday / block
15377
tx
a34e4..
preasset
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
nat_12
nat_12
:
nat_p
12
Theorem
nat_13
nat_13
:
nat_p
13
(proof)
Theorem
nat_14
nat_14
:
nat_p
14
(proof)
Theorem
nat_15
nat_15
:
nat_p
15
(proof)
Theorem
nat_16
nat_16
:
nat_p
16
(proof)
Theorem
nat_17
nat_17
:
nat_p
17
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
d8085..
:
∀ x0 x1 .
nat_p
x1
⟶
x0
∈
ordsucc
(
add_nat
x0
x1
)
(proof)
Known
nat_0
nat_0
:
nat_p
0
Theorem
b76af..
:
add_nat
23
1
=
24
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
86ab5..
:
add_nat
23
2
=
25
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
da65f..
:
add_nat
23
3
=
26
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
92918..
:
add_nat
23
4
=
27
(proof)
Known
nat_4
nat_4
:
nat_p
4
Theorem
1505b..
:
add_nat
23
5
=
28
(proof)
Known
nat_5
nat_5
:
nat_p
5
Theorem
9d5e3..
:
add_nat
23
6
=
29
(proof)
Known
nat_6
nat_6
:
nat_p
6
Theorem
a1411..
:
add_nat
23
7
=
30
(proof)
Known
nat_7
nat_7
:
nat_p
7
Theorem
2e090..
:
add_nat
23
8
=
31
(proof)
Known
nat_8
nat_8
:
nat_p
8
Theorem
e4564..
:
23
∈
32
(proof)
Theorem
1f5db..
:
add_nat
24
1
=
25
(proof)
Theorem
e90e1..
:
add_nat
24
2
=
26
(proof)
Theorem
fe07b..
:
add_nat
24
3
=
27
(proof)
Theorem
de55b..
:
add_nat
24
4
=
28
(proof)
Theorem
14e96..
:
add_nat
24
5
=
29
(proof)
Theorem
2a2ab..
:
add_nat
24
6
=
30
(proof)
Theorem
6ba1d..
:
add_nat
24
7
=
31
(proof)
Theorem
be3fd..
:
24
∈
32
(proof)