Search for blocks/addresses/...
Proofgold Asset
asset id
9866df09f6d727740c63c79d46a85f82616f26901636991537393f5be9685fe4
asset hash
7801b2082bf954440dfa3d7bdcbf8c4e8b43417186185492c20d53641df69e20
bday / block
5919
tx
6b5ba..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
Group
Group
:
ι
→
ο
Param
ap
ap
:
ι
→
ι
→
ι
Param
normal_subgroup
normal_subgroup
:
ι
→
ι
→
ο
Param
abelian_Group
abelian_Group
:
ι
→
ο
Param
quotient_Group
quotient_Group
:
ι
→
ι
→
ι
Param
trivial_Group_p
trivial_Group_p
:
ι
→
ο
Definition
solvable_Group_p
solvable_Group_p
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
and
(
and
(
and
(
∀ x5 .
x5
∈
ordsucc
x2
⟶
Group
(
ap
x4
x5
)
)
(
∀ x5 .
x5
∈
x2
⟶
normal_subgroup
(
ap
x4
(
ordsucc
x5
)
)
(
ap
x4
x5
)
)
)
(
∀ x5 .
x5
∈
x2
⟶
abelian_Group
(
quotient_Group
(
ap
x4
x5
)
(
ap
x4
(
ordsucc
x5
)
)
)
)
)
(
x0
=
ap
x4
0
)
)
(
trivial_Group_p
(
ap
x4
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Param
decode_b
decode_b
:
ι
→
ι
→
ι
→
ι
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
Group_Hom
Group_Hom
:=
λ x0 x1 x2 .
and
(
and
(
and
(
Group
x0
)
(
Group
x1
)
)
(
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
)
)
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x3
x4
)
=
field1b
x1
(
ap
x2
x3
)
(
ap
x2
x4
)
)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
Group_Iso
Group_Iso
:=
λ x0 x1 x2 .
and
(
Group_Hom
x0
x1
x2
)
(
bij
(
field0
x0
)
(
field0
x1
)
(
ap
x2
)
)
Definition
Group_Isomorphic
Group_Isomorphic
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 .
Group_Iso
x0
x1
x3
⟶
x2
)
⟶
x2
Param
struct_b_b_e_e
struct_b_b_e_e
:
ι
→
ο
Param
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
Field
Field
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Definition
field3
Field_zero
:=
λ x0 .
ap
x0
3
Known
explicit_Field_plus_cancelL
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
Known
Field_explicit_Field
Field_explicit_Field
:
∀ x0 .
Field
x0
⟶
explicit_Field
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
Theorem
Field_plus_cancelL
Field_plus_cancelL
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x1
x3
⟶
x2
=
x3
(proof)
Known
explicit_Field_plus_cancelR
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
Theorem
Field_plus_cancelR
Field_plus_cancelR
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x3
=
field1b
x0
x2
x3
⟶
x1
=
x2
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
Field_minus
Field_minus
:=
λ x0 x1 .
If_i
(
x1
∈
ap
x0
0
)
(
explicit_Field_minus
(
ap
x0
0
)
(
ap
x0
3
)
(
ap
x0
4
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
x1
)
0
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
Field_minus_eq
Field_minus_eq
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
x0
x1
=
explicit_Field_minus
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
Field_minus_undef
Field_minus_undef
:
∀ x0 .
Field
x0
⟶
∀ x1 .
nIn
x1
(
field0
x0
)
⟶
Field_minus
x0
x1
=
0
(proof)
Known
explicit_Field_minus_clos
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
Theorem
Field_minus_clos
Field_minus_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
x0
x1
∈
field0
x0
(proof)
Known
explicit_Field_minus_R
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
Theorem
Field_minus_R
Field_minus_R
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
x1
(
Field_minus
x0
x1
)
=
field3
x0
(proof)
Known
explicit_Field_minus_L
explicit_Field_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x5
=
x1
Theorem
Field_minus_L
Field_minus_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
Field_minus
x0
x1
)
x1
=
field3
x0
(proof)
Known
explicit_Field_minus_invol
explicit_Field_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x5
Theorem
Field_minus_invol
Field_minus_invol
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
x0
(
Field_minus
x0
x1
)
=
x1
(proof)
Known
Field_one_In
Field_one_In
:
∀ x0 .
Field
x0
⟶
field4
x0
∈
field0
x0
Known
explicit_Field_minus_one_In
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
x0
Theorem
Field_minus_one_In
Field_minus_one_In
:
∀ x0 .
Field
x0
⟶
Field_minus
x0
(
field4
x0
)
∈
field0
x0
(proof)
Known
explicit_Field_zero_multR
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
Theorem
Field_zero_multR
Field_zero_multR
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
x1
(
field3
x0
)
=
field3
x0
(proof)
Known
explicit_Field_zero_multL
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
Theorem
Field_zero_multL
Field_zero_multL
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field3
x0
)
x1
=
field3
x0
(proof)
Known
explicit_Field_minus_mult
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
Theorem
Field_minus_mult
Field_minus_mult
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
x0
x1
=
field2b
x0
(
Field_minus
x0
(
field4
x0
)
)
x1
(proof)
Known
explicit_Field_minus_one_square
explicit_Field_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
=
x2
Theorem
Field_minus_one_square
Field_minus_one_square
:
∀ x0 .
Field
x0
⟶
field2b
x0
(
Field_minus
x0
(
field4
x0
)
)
(
Field_minus
x0
(
field4
x0
)
)
=
field4
x0
(proof)
Known
explicit_Field_minus_square
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
Theorem
Field_minus_square
Field_minus_square
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
Field_minus
x0
x1
)
(
Field_minus
x0
x1
)
=
field2b
x0
x1
x1
(proof)
Known
Field_zero_In
Field_zero_In
:
∀ x0 .
Field
x0
⟶
field3
x0
∈
field0
x0
Known
explicit_Field_minus_zero
explicit_Field_minus_zero
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
Theorem
Field_minus_zero
Field_minus_zero
:
∀ x0 .
Field
x0
⟶
Field_minus
x0
(
field3
x0
)
=
field3
x0
(proof)
Known
explicit_Field_dist_R
explicit_Field_dist_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
Theorem
Field_dist_R
Field_dist_R
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
(
field1b
x0
x1
x2
)
x3
=
field1b
x0
(
field2b
x0
x1
x3
)
(
field2b
x0
x2
x3
)
(proof)
Known
Field_plus_clos
Field_plus_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
Known
explicit_Field_minus_plus_dist
explicit_Field_minus_plus_dist
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x5
x6
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
Theorem
Field_minus_plus_dist
Field_minus_plus_dist
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
Field_minus
x0
(
field1b
x0
x1
x2
)
=
field1b
x0
(
Field_minus
x0
x1
)
(
Field_minus
x0
x2
)
(proof)
Known
Field_mult_clos
Field_mult_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
Known
explicit_Field_minus_mult_L
explicit_Field_minus_mult_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x6
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
Theorem
Field_minus_mult_L
Field_minus_mult_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
(
Field_minus
x0
x1
)
x2
=
Field_minus
x0
(
field2b
x0
x1
x2
)
(proof)
Known
explicit_Field_minus_mult_R
explicit_Field_minus_mult_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
Theorem
Field_minus_mult_R
Field_minus_mult_R
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
(
Field_minus
x0
x2
)
=
Field_minus
x0
(
field2b
x0
x1
x2
)
(proof)
Known
explicit_Field_square_zero_inv
explicit_Field_square_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x5
=
x1
⟶
x5
=
x1
Theorem
Field_square_zero_inv
Field_square_zero_inv
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
x1
x1
=
field3
x0
⟶
x1
=
field3
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
explicit_Field_mult_zero_inv
explicit_Field_mult_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x1
⟶
or
(
x5
=
x1
)
(
x6
=
x1
)
Theorem
Field_mult_zero_inv
Field_mult_zero_inv
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field3
x0
⟶
or
(
x1
=
field3
x0
)
(
x2
=
field3
x0
)
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
595d0..
:=
λ x0 .
and
(
Field
x0
)
(
∀ x1 .
x1
∈
omega
⟶
nat_primrec
(
field4
x0
)
(
λ x3 .
field1b
x0
(
field4
x0
)
)
x1
=
field3
x0
⟶
∀ x2 : ο .
x2
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
subfield
subfield
:=
λ x0 x1 .
and
(
and
(
and
(
and
(
and
(
and
(
Field
x0
)
(
Field
x1
)
)
(
field0
x0
⊆
field0
x1
)
)
(
field3
x0
=
field3
x1
)
)
(
field4
x0
=
field4
x1
)
)
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x2
x3
=
field1b
x1
x2
x3
)
)
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x2
x3
=
field2b
x1
x2
x3
)
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
subfield_I
subfield_I
:
∀ x0 x1 .
Field
x0
⟶
Field
x1
⟶
field0
x0
⊆
field0
x1
⟶
field3
x0
=
field3
x1
⟶
field4
x0
=
field4
x1
⟶
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x2
x3
=
field1b
x1
x2
x3
)
⟶
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x2
x3
=
field2b
x1
x2
x3
)
⟶
subfield
x0
x1
(proof)
Known
and7E
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
subfield_E
subfield_E
:
∀ x0 x1 .
subfield
x0
x1
⟶
∀ x2 : ο .
(
Field
x0
⟶
Field
x1
⟶
field0
x0
⊆
field0
x1
⟶
field3
x0
=
field3
x1
⟶
field4
x0
=
field4
x1
⟶
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
field1b
x0
x3
x4
=
field1b
x1
x3
x4
)
⟶
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
field2b
x0
x3
x4
=
field2b
x1
x3
x4
)
⟶
x2
)
⟶
x2
(proof)
Definition
Field_Hom
Field_Hom
:=
λ x0 x1 x2 .
and
(
and
(
and
(
and
(
and
(
and
(
Field
x0
)
(
Field
x1
)
)
(
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
)
)
(
ap
x2
(
field3
x0
)
=
field3
x1
)
)
(
ap
x2
(
field4
x0
)
=
field4
x1
)
)
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x3
x4
)
=
field1b
x1
(
ap
x2
x3
)
(
ap
x2
x4
)
)
)
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
field2b
x0
x3
x4
)
=
field2b
x1
(
ap
x2
x3
)
(
ap
x2
x4
)
)
Theorem
Field_Hom_I
Field_Hom_I
:
∀ x0 x1 x2 .
Field
x0
⟶
Field
x1
⟶
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
⟶
ap
x2
(
field3
x0
)
=
field3
x1
⟶
ap
x2
(
field4
x0
)
=
field4
x1
⟶
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x3
x4
)
=
field1b
x1
(
ap
x2
x3
)
(
ap
x2
x4
)
)
⟶
(
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
field2b
x0
x3
x4
)
=
field2b
x1
(
ap
x2
x3
)
(
ap
x2
x4
)
)
⟶
Field_Hom
x0
x1
x2
(proof)
Param
CRing_with_id_omega_exp
CRing_with_id_omega_exp
:
ι
→
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
Field_omega_exp_0
Field_omega_exp_0
:
∀ x0 .
Field
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
x0
x1
0
=
field4
x0
Known
Field_omega_exp_S
Field_omega_exp_S
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
x0
x1
x2
)
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
Field_omega_exp_clos
Field_omega_exp_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
x2
∈
field0
x0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
Field_div
Field_div
:
ι
→
ι
→
ι
→
ι
Known
Field_one_neq_zero
Field_one_neq_zero
:
∀ x0 .
Field
x0
⟶
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
Known
Field_mult_div
Field_mult_div
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
x1
=
field2b
x0
x2
(
Field_div
x0
x1
x2
)
Known
Field_div_clos
Field_div_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
Field_div
x0
x1
x2
∈
field0
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Theorem
Field_Hom_E
Field_Hom_E
:
∀ x0 x1 x2 .
Field_Hom
x0
x1
x2
⟶
∀ x3 : ο .
(
Field
x0
⟶
Field
x1
⟶
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
⟶
ap
x2
(
field3
x0
)
=
field3
x1
⟶
ap
x2
(
field4
x0
)
=
field4
x1
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x4
x5
)
=
field1b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field2b
x0
x4
x5
)
=
field2b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
Field_minus
x0
x4
)
=
Field_minus
x1
(
ap
x2
x4
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
x4
=
field3
x1
⟶
x4
=
field3
x0
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
x4
=
ap
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
omega
⟶
ap
x2
(
CRing_with_id_omega_exp
x0
x4
x5
)
=
CRing_with_id_omega_exp
x1
(
ap
x2
x4
)
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
Field_Hom_inj
Field_Hom_inj
:
∀ x0 x1 x2 .
Field_Hom
x0
x1
x2
⟶
∀ x3 .
x3
∈
field0
x0
⟶
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
x3
=
ap
x2
x4
⟶
x3
=
x4
(proof)
Theorem
subfield_refl
subfield_refl
:
∀ x0 .
Field
x0
⟶
subfield
x0
x0
(proof)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
subfield_tra
subfield_tra
:
∀ x0 x1 x2 .
subfield
x0
x1
⟶
subfield
x1
x2
⟶
subfield
x0
x2
(proof)
Definition
Field_extension_by_1
Field_extension_by_1
:=
λ x0 x1 x2 .
and
(
and
(
subfield
x0
x1
)
(
x2
∈
setminus
(
field0
x1
)
(
field0
x0
)
)
)
(
∀ x3 .
subfield
x0
x3
⟶
x2
∈
field0
x3
⟶
subfield
x1
x3
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
Field_extension_by_1_I
Field_extension_by_1_I
:
∀ x0 x1 x2 .
subfield
x0
x1
⟶
x2
∈
setminus
(
field0
x1
)
(
field0
x0
)
⟶
(
∀ x3 .
subfield
x0
x3
⟶
x2
∈
field0
x3
⟶
subfield
x1
x3
)
⟶
Field_extension_by_1
x0
x1
x2
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
Field_extension_by_1_E
Field_extension_by_1_E
:
∀ x0 x1 x2 .
Field_extension_by_1
x0
x1
x2
⟶
∀ x3 : ο .
(
subfield
x0
x1
⟶
x2
∈
setminus
(
field0
x1
)
(
field0
x0
)
⟶
(
∀ x4 .
subfield
x0
x4
⟶
x2
∈
field0
x4
⟶
subfield
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Definition
radical_field_extension
radical_field_extension
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
and
(
and
(
ap
x5
0
=
x0
)
(
ap
x5
x3
=
x1
)
)
(
∀ x6 .
x6
∈
ordsucc
x3
⟶
Field
(
ap
x5
x6
)
)
)
(
∀ x6 .
x6
∈
x3
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
field0
(
ap
x5
(
ordsucc
x6
)
)
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
omega
)
(
and
(
CRing_with_id_omega_exp
(
ap
x5
(
ordsucc
x6
)
)
x8
x10
∈
field0
(
ap
x5
x6
)
)
(
Field_extension_by_1
(
ap
x5
x6
)
(
ap
x5
(
ordsucc
x6
)
)
x8
)
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
radical_field_extension_I
radical_field_extension_I
:
∀ x0 x1 x2 .
x2
∈
omega
⟶
∀ x3 .
ap
x3
0
=
x0
⟶
ap
x3
x2
=
x1
⟶
(
∀ x4 .
x4
∈
ordsucc
x2
⟶
Field
(
ap
x3
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
field0
(
ap
x3
(
ordsucc
x4
)
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
omega
)
(
and
(
CRing_with_id_omega_exp
(
ap
x3
(
ordsucc
x4
)
)
x6
x8
∈
field0
(
ap
x3
x4
)
)
(
Field_extension_by_1
(
ap
x3
x4
)
(
ap
x3
(
ordsucc
x4
)
)
x6
)
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
radical_field_extension
x0
x1
(proof)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Param
ordinal
ordinal
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Theorem
radical_field_extension_E
radical_field_extension_E
:
∀ x0 x1 .
radical_field_extension
x0
x1
⟶
∀ x2 : ο .
(
Field
x0
⟶
Field
x1
⟶
subfield
x0
x1
⟶
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
ap
x4
0
=
x0
⟶
ap
x4
x3
=
x1
⟶
(
∀ x5 .
x5
∈
ordsucc
x3
⟶
Field
(
ap
x4
x5
)
)
⟶
(
∀ x5 .
x5
∈
ordsucc
x3
⟶
∀ x6 .
x6
∈
ordsucc
x5
⟶
subfield
(
ap
x4
x6
)
(
ap
x4
x5
)
)
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
field0
(
ap
x4
(
ordsucc
x5
)
)
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
omega
)
(
and
(
CRing_with_id_omega_exp
(
ap
x4
(
ordsucc
x5
)
)
x7
x9
∈
field0
(
ap
x4
x5
)
)
(
Field_extension_by_1
(
ap
x4
x5
)
(
ap
x4
(
ordsucc
x5
)
)
x7
)
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x2
)
⟶
x2
(proof)
Param
CRing_with_id_eval_poly
CRing_with_id_eval_poly
:
ι
→
ι
→
ι
→
ι
→
ι
Definition
ca601..
:=
λ x0 x1 x2 x3 .
and
(
and
(
subfield
x0
x1
)
(
x3
∈
setexp
(
field0
x0
)
(
ordsucc
x2
)
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
)
(
and
(
ap
x3
x2
=
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
setexp
(
setexp
(
field0
x1
)
2
)
x2
)
(
and
(
∀ x8 .
x8
∈
x2
⟶
ap
(
ap
x7
x8
)
1
=
field4
x0
)
(
∀ x8 .
x8
∈
field0
x1
⟶
CRing_with_id_eval_poly
x1
(
ordsucc
x2
)
x3
x8
=
nat_primrec
x5
(
λ x10 x11 .
field2b
x1
x11
(
CRing_with_id_eval_poly
x1
2
(
ap
x7
x10
)
x8
)
)
x2
)
)
⟶
x6
)
⟶
x6
)
)
⟶
x4
)
⟶
x4
)
Definition
e95e2..
:=
λ x0 x1 x2 x3 .
and
(
ca601..
x0
x1
x2
x3
)
(
∀ x4 .
ca601..
x0
x4
x2
x3
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
and
(
Field_Hom
x1
x4
x6
)
(
∀ x7 .
x7
∈
field0
x0
⟶
ap
x6
x7
=
x7
)
)
(
∀ x7 .
x7
∈
field0
x0
⟶
∀ x8 .
x8
∈
field0
x0
⟶
ap
x6
x7
=
ap
x6
x8
⟶
x7
=
x8
)
⟶
x5
)
⟶
x5
)
Definition
a42d3..
:=
λ x0 x1 x2 .
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
and
(
e95e2..
x0
x4
x1
x2
)
(
subfield
x4
x6
)
)
(
radical_field_extension
x0
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Definition
Field_automorphism_fixing
Field_automorphism_fixing
:=
λ x0 x1 x2 .
and
(
and
(
and
(
subfield
x1
x0
)
(
Field_Hom
x0
x0
x2
)
)
(
∀ x3 .
x3
∈
ap
x0
0
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
ap
x0
0
)
(
ap
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
)
(
∀ x3 .
x3
∈
ap
x1
0
⟶
ap
x2
x3
=
x3
)
Theorem
Field_automorphism_fixing_I
Field_automorphism_fixing_I
:
∀ x0 x1 x2 .
subfield
x1
x0
⟶
Field_Hom
x0
x0
x2
⟶
(
∀ x3 .
x3
∈
ap
x0
0
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
ap
x0
0
)
(
ap
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x3 .
x3
∈
ap
x1
0
⟶
ap
x2
x3
=
x3
)
⟶
Field_automorphism_fixing
x0
x1
x2
(proof)
Known
and4E
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Theorem
Field_automorphism_fixing_E
Field_automorphism_fixing_E
:
∀ x0 x1 x2 .
Field_automorphism_fixing
x0
x1
x2
⟶
∀ x3 : ο .
(
subfield
x1
x0
⟶
Field_Hom
x0
x0
x2
⟶
(
∀ x4 .
x4
∈
ap
x0
0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
ap
x0
0
)
(
ap
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
(
∀ x4 .
x4
∈
ap
x1
0
⟶
ap
x2
x4
=
x4
)
⟶
x3
)
⟶
x3
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Theorem
lam_comp_exp_In
lam_comp_exp_In
:
∀ x0 x1 x2 x3 .
x3
∈
setexp
x1
x0
⟶
∀ x4 .
x4
∈
setexp
x2
x1
⟶
lam_comp
x0
x4
x3
∈
setexp
x2
x0
(proof)
Theorem
lam_id_exp_In
lam_id_exp_In
:
∀ x0 .
lam_id
x0
∈
setexp
x0
x0
(proof)
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
lam_comp_assoc
lam_comp_assoc
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 x4 .
lam_comp
x0
x4
(
lam_comp
x0
x3
x2
)
=
lam_comp
x0
(
lam_comp
x1
x4
x3
)
x2
(proof)
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Theorem
lam_comp_id_L
lam_comp_id_L
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
(
lam_id
x1
)
x2
=
x2
(proof)
Theorem
lam_comp_id_R
lam_comp_id_R
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
x2
(
lam_id
x0
)
=
x2
(proof)
Theorem
Field_Hom_id
Field_Hom_id
:
∀ x0 .
Field
x0
⟶
Field_Hom
x0
x0
(
lam_id
(
ap
x0
0
)
)
(proof)
Theorem
Field_Hom_comp
Field_Hom_comp
:
∀ x0 x1 x2 x3 x4 .
Field_Hom
x0
x1
x3
⟶
Field_Hom
x1
x2
x4
⟶
Field_Hom
x0
x2
(
lam_comp
(
ap
x0
0
)
x4
x3
)
(proof)
Param
pack_b
pack_b
:
ι
→
CT2
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
Galois_Group
Galois_Group
:=
λ x0 x1 .
pack_b
(
Sep
(
setexp
(
ap
x0
0
)
(
ap
x0
0
)
)
(
Field_automorphism_fixing
x0
x1
)
)
(
lam_comp
(
ap
x0
0
)
)
Known
pack_b_0_eq2
pack_b_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
x0
=
ap
(
pack_b
x0
x1
)
0
Theorem
Galois_Group_0
Galois_Group_0
:
∀ x0 x1 .
ap
(
Galois_Group
x0
x1
)
0
=
Sep
(
setexp
(
ap
x0
0
)
(
ap
x0
0
)
)
(
Field_automorphism_fixing
x0
x1
)
(proof)
Definition
explicit_Group
explicit_Group
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
and
(
∀ x4 .
x4
∈
x0
⟶
and
(
x1
x3
x4
=
x4
)
(
x1
x4
x3
=
x4
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
and
(
x1
x4
x6
=
x3
)
(
x1
x6
x4
=
x3
)
)
⟶
x5
)
⟶
x5
)
)
⟶
x2
)
⟶
x2
)
Known
GroupI
GroupI
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
Group
(
pack_b
x0
x1
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
inj_linv_coddep
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
x3
∈
x0
⟶
inv
x0
x2
(
x2
x3
)
=
x3
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
Galois_Group_Group
Galois_Group_Group
:
∀ x0 x1 .
subfield
x0
x1
⟶
Group
(
Galois_Group
x1
x0
)
(proof)
Param
pack_b_b_e_e
pack_b_b_e_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Known
pack_struct_b_b_e_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
Param
RealsStruct
RealsStruct
:
ι
→
ο
Param
RealsStruct_Q
RealsStruct_Q
:
ι
→
ι
Param
RealsStruct_one
RealsStruct_one
:
ι
→
ι
Param
Field_of_RealsStruct
Field_of_RealsStruct
:
ι
→
ι
Param
natOfOrderedField_p
natOfOrderedField_p
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
RealsStruct_leq
RealsStruct_leq
:
ι
→
ι
→
ι
→
ο
Definition
RealsStruct_N
RealsStruct_N
:=
λ x0 .
Sep
(
field0
x0
)
(
natOfOrderedField_p
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
)
Definition
RealsStruct_Npos
RealsStruct_Npos
:=
λ x0 .
{x1 ∈
RealsStruct_N
x0
|
x1
=
field4
x0
⟶
∀ x2 : ο .
x2
}
Definition
RealsStruct_Z
RealsStruct_Z
:=
λ x0 .
{x1 ∈
field0
x0
|
or
(
or
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
}
Definition
explicit_OrderedField_rationalp
explicit_OrderedField_rationalp
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
(
x4
x10
x6
=
x8
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
Param
explicit_OrderedField
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Known
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Known
Field_unpack_eq
Field_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
unpack_b_b_e_e_o
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_Field
x6
x9
x10
x7
x8
)
=
explicit_Field
x0
x3
x4
x1
x2
Known
explicit_OrderedField_explicit_Field_Q
explicit_OrderedField_explicit_Field_Q
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
(
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
)
x1
x2
x3
x4
Known
explicit_OrderedField_of_RealsStruct
explicit_OrderedField_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
explicit_OrderedField
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
Known
RealsStruct_Q_props
RealsStruct_Q_props
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 : ο .
(
RealsStruct_Q
x0
⊆
field0
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
∀ x3 : ο .
(
x2
∈
field0
x0
⟶
∀ x4 .
x4
∈
RealsStruct_Z
x0
⟶
∀ x5 .
x5
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x5
x2
=
x4
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
∀ x4 .
x4
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x4
x2
=
x3
⟶
x2
∈
RealsStruct_Q
x0
)
⟶
x1
)
⟶
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
RealsStruct_minus_eq2
RealsStruct_minus_eq2
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
=
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
Theorem
Field_RealsStruct_Q
Field_RealsStruct_Q
:
∀ x0 .
RealsStruct
x0
⟶
Field
(
pack_b_b_e_e
(
RealsStruct_Q
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
)
(proof)
Definition
RealsStruct_omega_embedding
RealsStruct_omega_embedding
:=
λ x0 .
nat_primrec
(
field4
x0
)
(
λ x1 x2 .
field1b
x0
x2
(
RealsStruct_one
x0
)
)
Param
explicit_Nats
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
explicit_Nats_E
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
RealsStruct_natOfOrderedField
RealsStruct_natOfOrderedField
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Nats
(
RealsStruct_N
x0
)
(
field4
x0
)
(
λ x1 .
field1b
x0
x1
(
RealsStruct_one
x0
)
)
Theorem
RealsStruct_omega_embedding_N
RealsStruct_omega_embedding_N
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
omega
⟶
RealsStruct_omega_embedding
x0
x1
∈
RealsStruct_N
x0
(proof)