Search for blocks/addresses/...

Proofgold Asset

asset id
9866df09f6d727740c63c79d46a85f82616f26901636991537393f5be9685fe4
asset hash
7801b2082bf954440dfa3d7bdcbf8c4e8b43417186185492c20d53641df69e20
bday / block
5919
tx
6b5ba..
preasset
doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Param ordsuccordsucc : ιι
Param GroupGroup : ιο
Param apap : ιιι
Param normal_subgroupnormal_subgroup : ιιο
Param abelian_Groupabelian_Group : ιο
Param quotient_Groupquotient_Group : ιιι
Param trivial_Group_ptrivial_Group_p : ιο
Definition solvable_Group_psolvable_Group_p := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (and (and (and (∀ x5 . x5ordsucc x2Group (ap x4 x5)) (∀ x5 . x5x2normal_subgroup (ap x4 (ordsucc x5)) (ap x4 x5))) (∀ x5 . x5x2abelian_Group (quotient_Group (ap x4 x5) (ap x4 (ordsucc x5))))) (x0 = ap x4 0)) (trivial_Group_p (ap x4 x2))x3)x3)x1)x1
Definition field0RealsStruct_carrier := λ x0 . ap x0 0
Param decode_bdecode_b : ιιιι
Definition field1bRealsStruct_plus := λ x0 . decode_b (ap x0 1)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition Group_HomGroup_Hom := λ x0 x1 x2 . and (and (and (Group x0) (Group x1)) (x2setexp (field0 x1) (field0 x0))) (∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 (field1b x0 x3 x4) = field1b x1 (ap x2 x3) (ap x2 x4))
Param bijbij : ιι(ιι) → ο
Definition Group_IsoGroup_Iso := λ x0 x1 x2 . and (Group_Hom x0 x1 x2) (bij (field0 x0) (field0 x1) (ap x2))
Definition Group_IsomorphicGroup_Isomorphic := λ x0 x1 . ∀ x2 : ο . (∀ x3 . Group_Iso x0 x1 x3x2)x2
Param struct_b_b_e_estruct_b_b_e_e : ιο
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))
Definition field2bRealsStruct_mult := λ x0 . decode_b (ap x0 2)
Definition field4RealsStruct_zero := λ x0 . ap x0 4
Definition field3Field_zero := λ x0 . ap x0 3
Known explicit_Field_plus_cancelLexplicit_Field_plus_cancelL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x6 = x3 x5 x7x6 = x7
Known Field_explicit_FieldField_explicit_Field : ∀ x0 . Field x0explicit_Field (field0 x0) (field3 x0) (field4 x0) (field1b x0) (field2b x0)
Theorem Field_plus_cancelLField_plus_cancelL : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 x2 = field1b x0 x1 x3x2 = x3 (proof)
Known explicit_Field_plus_cancelRexplicit_Field_plus_cancelR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x7 = x3 x6 x7x5 = x6
Theorem Field_plus_cancelRField_plus_cancelR : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 x3 = field1b x0 x2 x3x1 = x2 (proof)
Param If_iIf_i : οιιι
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Definition Field_minusField_minus := λ x0 x1 . If_i (x1ap x0 0) (explicit_Field_minus (ap x0 0) (ap x0 3) (ap x0 4) (decode_b (ap x0 1)) (decode_b (ap x0 2)) x1) 0
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem Field_minus_eqField_minus_eq : ∀ x0 . Field x0∀ x1 . x1field0 x0Field_minus x0 x1 = explicit_Field_minus (field0 x0) (field3 x0) (field4 x0) (field1b x0) (field2b x0) x1 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem Field_minus_undefField_minus_undef : ∀ x0 . Field x0∀ x1 . nIn x1 (field0 x0)Field_minus x0 x1 = 0 (proof)
Known explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5x0
Theorem Field_minus_closField_minus_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0Field_minus x0 x1field0 x0 (proof)
Known explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1
Theorem Field_minus_RField_minus_R : ∀ x0 . Field x0∀ x1 . x1field0 x0field1b x0 x1 (Field_minus x0 x1) = field3 x0 (proof)
Known explicit_Field_minus_Lexplicit_Field_minus_L : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 (explicit_Field_minus x0 x1 x2 x3 x4 x5) x5 = x1
Theorem Field_minus_LField_minus_L : ∀ x0 . Field x0∀ x1 . x1field0 x0field1b x0 (Field_minus x0 x1) x1 = field3 x0 (proof)
Known explicit_Field_minus_involexplicit_Field_minus_invol : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x5
Theorem Field_minus_involField_minus_invol : ∀ x0 . Field x0∀ x1 . x1field0 x0Field_minus x0 (Field_minus x0 x1) = x1 (proof)
Known Field_one_InField_one_In : ∀ x0 . Field x0field4 x0field0 x0
Known explicit_Field_minus_one_Inexplicit_Field_minus_one_In : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_Field_minus x0 x1 x2 x3 x4 x2x0
Theorem Field_minus_one_InField_minus_one_In : ∀ x0 . Field x0Field_minus x0 (field4 x0)field0 x0 (proof)
Known explicit_Field_zero_multRexplicit_Field_zero_multR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x5 x1 = x1
Theorem Field_zero_multRField_zero_multR : ∀ x0 . Field x0∀ x1 . x1field0 x0field2b x0 x1 (field3 x0) = field3 x0 (proof)
Known explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x1 x5 = x1
Theorem Field_zero_multLField_zero_multL : ∀ x0 . Field x0∀ x1 . x1field0 x0field2b x0 (field3 x0) x1 = field3 x0 (proof)
Known explicit_Field_minus_multexplicit_Field_minus_mult : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5 = x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) x5
Theorem Field_minus_multField_minus_mult : ∀ x0 . Field x0∀ x1 . x1field0 x0Field_minus x0 x1 = field2b x0 (Field_minus x0 (field4 x0)) x1 (proof)
Known explicit_Field_minus_one_squareexplicit_Field_minus_one_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) (explicit_Field_minus x0 x1 x2 x3 x4 x2) = x2
Theorem Field_minus_one_squareField_minus_one_square : ∀ x0 . Field x0field2b x0 (Field_minus x0 (field4 x0)) (Field_minus x0 (field4 x0)) = field4 x0 (proof)
Known explicit_Field_minus_squareexplicit_Field_minus_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x4 x5 x5
Theorem Field_minus_squareField_minus_square : ∀ x0 . Field x0∀ x1 . x1field0 x0field2b x0 (Field_minus x0 x1) (Field_minus x0 x1) = field2b x0 x1 x1 (proof)
Known Field_zero_InField_zero_In : ∀ x0 . Field x0field3 x0field0 x0
Known explicit_Field_minus_zeroexplicit_Field_minus_zero : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1
Theorem Field_minus_zeroField_minus_zero : ∀ x0 . Field x0Field_minus x0 (field3 x0) = field3 x0 (proof)
Known explicit_Field_dist_Rexplicit_Field_dist_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 (x3 x5 x6) x7 = x3 (x4 x5 x7) (x4 x6 x7)
Theorem Field_dist_RField_dist_R : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 (field1b x0 x1 x2) x3 = field1b x0 (field2b x0 x1 x3) (field2b x0 x2 x3) (proof)
Known Field_plus_closField_plus_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0
Known explicit_Field_minus_plus_distexplicit_Field_minus_plus_dist : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x5 x6) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x5) (explicit_Field_minus x0 x1 x2 x3 x4 x6)
Theorem Field_minus_plus_distField_minus_plus_dist : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0Field_minus x0 (field1b x0 x1 x2) = field1b x0 (Field_minus x0 x1) (Field_minus x0 x2) (proof)
Known Field_mult_closField_mult_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2field0 x0
Known explicit_Field_minus_mult_Lexplicit_Field_minus_mult_L : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) x6 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x5 x6)
Theorem Field_minus_mult_LField_minus_mult_L : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 (Field_minus x0 x1) x2 = Field_minus x0 (field2b x0 x1 x2) (proof)
Known explicit_Field_minus_mult_Rexplicit_Field_minus_mult_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0x4 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x6) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x5 x6)
Theorem Field_minus_mult_RField_minus_mult_R : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 (Field_minus x0 x2) = Field_minus x0 (field2b x0 x1 x2) (proof)
Known explicit_Field_square_zero_invexplicit_Field_square_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x5 x5 = x1x5 = x1
Theorem Field_square_zero_invField_square_zero_inv : ∀ x0 . Field x0∀ x1 . x1field0 x0field2b x0 x1 x1 = field3 x0x1 = field3 x0 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known explicit_Field_mult_zero_invexplicit_Field_mult_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x1or (x5 = x1) (x6 = x1)
Theorem Field_mult_zero_invField_mult_zero_inv : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field3 x0or (x1 = field3 x0) (x2 = field3 x0) (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Definition 595d0.. := λ x0 . and (Field x0) (∀ x1 . x1omeganat_primrec (field4 x0) (λ x3 . field1b x0 (field4 x0)) x1 = field3 x0∀ x2 : ο . x2)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition subfieldsubfield := λ x0 x1 . and (and (and (and (and (and (Field x0) (Field x1)) (field0 x0field0 x1)) (field3 x0 = field3 x1)) (field4 x0 = field4 x1)) (∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x2 x3 = field1b x1 x2 x3)) (∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x2 x3 = field2b x1 x2 x3)
Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6
Theorem subfield_Isubfield_I : ∀ x0 x1 . Field x0Field x1field0 x0field0 x1field3 x0 = field3 x1field4 x0 = field4 x1(∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x2 x3 = field1b x1 x2 x3)(∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x2 x3 = field2b x1 x2 x3)subfield x0 x1 (proof)
Known and7Eand7E : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6∀ x7 : ο . (x0x1x2x3x4x5x6x7)x7
Theorem subfield_Esubfield_E : ∀ x0 x1 . subfield x0 x1∀ x2 : ο . (Field x0Field x1field0 x0field0 x1field3 x0 = field3 x1field4 x0 = field4 x1(∀ x3 . x3field0 x0∀ x4 . x4field0 x0field1b x0 x3 x4 = field1b x1 x3 x4)(∀ x3 . x3field0 x0∀ x4 . x4field0 x0field2b x0 x3 x4 = field2b x1 x3 x4)x2)x2 (proof)
Definition Field_HomField_Hom := λ x0 x1 x2 . and (and (and (and (and (and (Field x0) (Field x1)) (x2setexp (field0 x1) (field0 x0))) (ap x2 (field3 x0) = field3 x1)) (ap x2 (field4 x0) = field4 x1)) (∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 (field1b x0 x3 x4) = field1b x1 (ap x2 x3) (ap x2 x4))) (∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 (field2b x0 x3 x4) = field2b x1 (ap x2 x3) (ap x2 x4))
Theorem Field_Hom_IField_Hom_I : ∀ x0 x1 x2 . Field x0Field x1x2setexp (field0 x1) (field0 x0)ap x2 (field3 x0) = field3 x1ap x2 (field4 x0) = field4 x1(∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 (field1b x0 x3 x4) = field1b x1 (ap x2 x3) (ap x2 x4))(∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 (field2b x0 x3 x4) = field2b x1 (ap x2 x3) (ap x2 x4))Field_Hom x0 x1 x2 (proof)
Param CRing_with_id_omega_expCRing_with_id_omega_exp : ιιιι
Param nat_pnat_p : ιο
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known Field_omega_exp_0Field_omega_exp_0 : ∀ x0 . Field x0∀ x1 . CRing_with_id_omega_exp x0 x1 0 = field4 x0
Known Field_omega_exp_SField_omega_exp_S : ∀ x0 . Field x0∀ x1 x2 . x2omegaCRing_with_id_omega_exp x0 x1 (ordsucc x2) = field2b x0 x1 (CRing_with_id_omega_exp x0 x1 x2)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known Field_omega_exp_closField_omega_exp_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2omegaCRing_with_id_omega_exp x0 x1 x2field0 x0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param setminussetminus : ιιι
Param SingSing : ιι
Param Field_divField_div : ιιιι
Known Field_one_neq_zeroField_one_neq_zero : ∀ x0 . Field x0field4 x0 = field3 x0∀ x1 : ο . x1
Known Field_mult_divField_mult_div : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field3 x0))x1 = field2b x0 x2 (Field_div x0 x1 x2)
Known Field_div_closField_div_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field3 x0))Field_div x0 x1 x2field0 x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem Field_Hom_EField_Hom_E : ∀ x0 x1 x2 . Field_Hom x0 x1 x2∀ x3 : ο . (Field x0Field x1x2setexp (field0 x1) (field0 x0)ap x2 (field3 x0) = field3 x1ap x2 (field4 x0) = field4 x1(∀ x4 . x4field0 x0∀ x5 . x5field0 x0ap x2 (field1b x0 x4 x5) = field1b x1 (ap x2 x4) (ap x2 x5))(∀ x4 . x4field0 x0∀ x5 . x5field0 x0ap x2 (field2b x0 x4 x5) = field2b x1 (ap x2 x4) (ap x2 x5))(∀ x4 . x4field0 x0ap x2 (Field_minus x0 x4) = Field_minus x1 (ap x2 x4))(∀ x4 . x4field0 x0ap x2 x4 = field3 x1x4 = field3 x0)(∀ x4 . x4field0 x0∀ x5 . x5field0 x0ap x2 x4 = ap x2 x5x4 = x5)(∀ x4 . x4field0 x0∀ x5 . x5omegaap x2 (CRing_with_id_omega_exp x0 x4 x5) = CRing_with_id_omega_exp x1 (ap x2 x4) x5)x3)x3 (proof)
Theorem Field_Hom_injField_Hom_inj : ∀ x0 x1 x2 . Field_Hom x0 x1 x2∀ x3 . x3field0 x0∀ x4 . x4field0 x0ap x2 x3 = ap x2 x4x3 = x4 (proof)
Theorem subfield_reflsubfield_refl : ∀ x0 . Field x0subfield x0 x0 (proof)
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Theorem subfield_trasubfield_tra : ∀ x0 x1 x2 . subfield x0 x1subfield x1 x2subfield x0 x2 (proof)
Definition Field_extension_by_1Field_extension_by_1 := λ x0 x1 x2 . and (and (subfield x0 x1) (x2setminus (field0 x1) (field0 x0))) (∀ x3 . subfield x0 x3x2field0 x3subfield x1 x3)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem Field_extension_by_1_IField_extension_by_1_I : ∀ x0 x1 x2 . subfield x0 x1x2setminus (field0 x1) (field0 x0)(∀ x3 . subfield x0 x3x2field0 x3subfield x1 x3)Field_extension_by_1 x0 x1 x2 (proof)
Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3
Theorem Field_extension_by_1_EField_extension_by_1_E : ∀ x0 x1 x2 . Field_extension_by_1 x0 x1 x2∀ x3 : ο . (subfield x0 x1x2setminus (field0 x1) (field0 x0)(∀ x4 . subfield x0 x4x2field0 x4subfield x1 x4)x3)x3 (proof)
Definition radical_field_extensionradical_field_extension := λ x0 x1 . ∀ x2 : ο . (∀ x3 . and (x3omega) (∀ x4 : ο . (∀ x5 . and (and (and (ap x5 0 = x0) (ap x5 x3 = x1)) (∀ x6 . x6ordsucc x3Field (ap x5 x6))) (∀ x6 . x6x3∀ x7 : ο . (∀ x8 . and (x8field0 (ap x5 (ordsucc x6))) (∀ x9 : ο . (∀ x10 . and (x10omega) (and (CRing_with_id_omega_exp (ap x5 (ordsucc x6)) x8 x10field0 (ap x5 x6)) (Field_extension_by_1 (ap x5 x6) (ap x5 (ordsucc x6)) x8))x9)x9)x7)x7)x4)x4)x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem radical_field_extension_Iradical_field_extension_I : ∀ x0 x1 x2 . x2omega∀ x3 . ap x3 0 = x0ap x3 x2 = x1(∀ x4 . x4ordsucc x2Field (ap x3 x4))(∀ x4 . x4x2∀ x5 : ο . (∀ x6 . and (x6field0 (ap x3 (ordsucc x4))) (∀ x7 : ο . (∀ x8 . and (x8omega) (and (CRing_with_id_omega_exp (ap x3 (ordsucc x4)) x6 x8field0 (ap x3 x4)) (Field_extension_by_1 (ap x3 x4) (ap x3 (ordsucc x4)) x6))x7)x7)x5)x5)radical_field_extension x0 x1 (proof)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Param ordinalordinal : ιο
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known ordinal_TransSetordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Theorem radical_field_extension_Eradical_field_extension_E : ∀ x0 x1 . radical_field_extension x0 x1∀ x2 : ο . (Field x0Field x1subfield x0 x1∀ x3 . x3omega∀ x4 . ap x4 0 = x0ap x4 x3 = x1(∀ x5 . x5ordsucc x3Field (ap x4 x5))(∀ x5 . x5ordsucc x3∀ x6 . x6ordsucc x5subfield (ap x4 x6) (ap x4 x5))(∀ x5 . x5x3∀ x6 : ο . (∀ x7 . and (x7field0 (ap x4 (ordsucc x5))) (∀ x8 : ο . (∀ x9 . and (x9omega) (and (CRing_with_id_omega_exp (ap x4 (ordsucc x5)) x7 x9field0 (ap x4 x5)) (Field_extension_by_1 (ap x4 x5) (ap x4 (ordsucc x5)) x7))x8)x8)x6)x6)x2)x2 (proof)
Param CRing_with_id_eval_polyCRing_with_id_eval_poly : ιιιιι
Definition ca601.. := λ x0 x1 x2 x3 . and (and (subfield x0 x1) (x3setexp (field0 x0) (ordsucc x2))) (∀ x4 : ο . (∀ x5 . and (x5setminus (field0 x0) (Sing (field3 x0))) (and (ap x3 x2 = x5) (∀ x6 : ο . (∀ x7 . and (x7setexp (setexp (field0 x1) 2) x2) (and (∀ x8 . x8x2ap (ap x7 x8) 1 = field4 x0) (∀ x8 . x8field0 x1CRing_with_id_eval_poly x1 (ordsucc x2) x3 x8 = nat_primrec x5 (λ x10 x11 . field2b x1 x11 (CRing_with_id_eval_poly x1 2 (ap x7 x10) x8)) x2))x6)x6))x4)x4)
Definition e95e2.. := λ x0 x1 x2 x3 . and (ca601.. x0 x1 x2 x3) (∀ x4 . ca601.. x0 x4 x2 x3∀ x5 : ο . (∀ x6 . and (and (Field_Hom x1 x4 x6) (∀ x7 . x7field0 x0ap x6 x7 = x7)) (∀ x7 . x7field0 x0∀ x8 . x8field0 x0ap x6 x7 = ap x6 x8x7 = x8)x5)x5)
Definition a42d3.. := λ x0 x1 x2 . ∀ x3 : ο . (∀ x4 . (∀ x5 : ο . (∀ x6 . and (and (e95e2.. x0 x4 x1 x2) (subfield x4 x6)) (radical_field_extension x0 x6)x5)x5)x3)x3
Definition Field_automorphism_fixingField_automorphism_fixing := λ x0 x1 x2 . and (and (and (subfield x1 x0) (Field_Hom x0 x0 x2)) (∀ x3 . x3ap x0 0∀ x4 : ο . (∀ x5 . and (x5ap x0 0) (ap x2 x5 = x3)x4)x4)) (∀ x3 . x3ap x1 0ap x2 x3 = x3)
Theorem Field_automorphism_fixing_IField_automorphism_fixing_I : ∀ x0 x1 x2 . subfield x1 x0Field_Hom x0 x0 x2(∀ x3 . x3ap x0 0∀ x4 : ο . (∀ x5 . and (x5ap x0 0) (ap x2 x5 = x3)x4)x4)(∀ x3 . x3ap x1 0ap x2 x3 = x3)Field_automorphism_fixing x0 x1 x2 (proof)
Known and4Eand4E : ∀ x0 x1 x2 x3 : ο . and (and (and x0 x1) x2) x3∀ x4 : ο . (x0x1x2x3x4)x4
Theorem Field_automorphism_fixing_EField_automorphism_fixing_E : ∀ x0 x1 x2 . Field_automorphism_fixing x0 x1 x2∀ x3 : ο . (subfield x1 x0Field_Hom x0 x0 x2(∀ x4 . x4ap x0 0∀ x5 : ο . (∀ x6 . and (x6ap x0 0) (ap x2 x6 = x4)x5)x5)(∀ x4 . x4ap x1 0ap x2 x4 = x4)x3)x3 (proof)
Param lamSigma : ι(ιι) → ι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Theorem lam_comp_exp_Inlam_comp_exp_In : ∀ x0 x1 x2 x3 . x3setexp x1 x0∀ x4 . x4setexp x2 x1lam_comp x0 x4 x3setexp x2 x0 (proof)
Theorem lam_id_exp_Inlam_id_exp_In : ∀ x0 . lam_id x0setexp x0 x0 (proof)
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem lam_comp_assoclam_comp_assoc : ∀ x0 x1 x2 . x2setexp x1 x0∀ x3 x4 . lam_comp x0 x4 (lam_comp x0 x3 x2) = lam_comp x0 (lam_comp x1 x4 x3) x2 (proof)
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Theorem lam_comp_id_Llam_comp_id_L : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 (lam_id x1) x2 = x2 (proof)
Theorem lam_comp_id_Rlam_comp_id_R : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 x2 (lam_id x0) = x2 (proof)
Theorem Field_Hom_idField_Hom_id : ∀ x0 . Field x0Field_Hom x0 x0 (lam_id (ap x0 0)) (proof)
Theorem Field_Hom_compField_Hom_comp : ∀ x0 x1 x2 x3 x4 . Field_Hom x0 x1 x3Field_Hom x1 x2 x4Field_Hom x0 x2 (lam_comp (ap x0 0) x4 x3) (proof)
Param pack_bpack_b : ιCT2 ι
Param SepSep : ι(ιο) → ι
Definition Galois_GroupGalois_Group := λ x0 x1 . pack_b (Sep (setexp (ap x0 0) (ap x0 0)) (Field_automorphism_fixing x0 x1)) (lam_comp (ap x0 0))
Known pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0
Theorem Galois_Group_0Galois_Group_0 : ∀ x0 x1 . ap (Galois_Group x0 x1) 0 = Sep (setexp (ap x0 0) (ap x0 0)) (Field_automorphism_fixing x0 x1) (proof)
Definition explicit_Groupexplicit_Group := λ x0 . λ x1 : ι → ι → ι . and (and (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0) (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)) (∀ x2 : ο . (∀ x3 . and (x3x0) (and (∀ x4 . x4x0and (x1 x3 x4 = x4) (x1 x4 x3 = x4)) (∀ x4 . x4x0∀ x5 : ο . (∀ x6 . and (x6x0) (and (x1 x4 x6 = x3) (x1 x6 x4 = x3))x5)x5))x2)x2)
Known GroupIGroupI : ∀ x0 . ∀ x1 : ι → ι → ι . explicit_Group x0 x1Group (pack_b x0 x1)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Param invinv : ι(ιι) → ιι
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Known inj_linv_coddep : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)∀ x3 . x3x0inv x0 x2 (x2 x3) = x3
Known surj_rinvsurj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)∀ x3 . x3x1and (inv x0 x2 x3x0) (x2 (inv x0 x2 x3) = x3)
Known bij_invbij_inv : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2bij x1 x0 (inv x0 x2)
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Theorem Galois_Group_GroupGalois_Group_Group : ∀ x0 x1 . subfield x0 x1Group (Galois_Group x1 x0) (proof)
Param pack_b_b_e_epack_b_b_e_e : ι(ιιι) → (ιιι) → ιιι
Known pack_struct_b_b_e_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)∀ x3 . x3x0∀ x4 . x4x0struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)
Param RealsStructRealsStruct : ιο
Param RealsStruct_QRealsStruct_Q : ιι
Param RealsStruct_oneRealsStruct_one : ιι
Param Field_of_RealsStructField_of_RealsStruct : ιι
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param RealsStruct_leqRealsStruct_leq : ιιιο
Definition RealsStruct_NRealsStruct_N := λ x0 . Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))
Definition RealsStruct_NposRealsStruct_Npos := λ x0 . {x1 ∈ RealsStruct_N x0|x1 = field4 x0∀ x2 : ο . x2}
Definition RealsStruct_ZRealsStruct_Z := λ x0 . {x1 ∈ field0 x0|or (or (Field_minus (Field_of_RealsStruct x0) x1RealsStruct_Npos x0) (x1 = field4 x0)) (x1RealsStruct_Npos x0)}
Definition explicit_OrderedField_rationalpexplicit_OrderedField_rationalp := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 . ∀ x7 : ο . (∀ x8 . and (x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})}) (∀ x9 : ο . (∀ x10 . and (x10{x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x11 = x1∀ x12 : ο . x12}) (x4 x10 x6 = x8)x9)x9)x7)x7
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Known Field_unpack_eqField_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Field x6 x9 x10 x7 x8) = explicit_Field x0 x3 x4 x1 x2
Known explicit_OrderedField_explicit_Field_Qexplicit_OrderedField_explicit_Field_Q : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field (Sep x0 (explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5)) x1 x2 x3 x4
Known explicit_OrderedField_of_RealsStructexplicit_OrderedField_of_RealsStruct : ∀ x0 . RealsStruct x0explicit_OrderedField (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0)
Known RealsStruct_Q_propsRealsStruct_Q_props : ∀ x0 . RealsStruct x0∀ x1 : ο . (RealsStruct_Q x0field0 x0(∀ x2 . x2RealsStruct_Q x0∀ x3 : ο . (x2field0 x0∀ x4 . x4RealsStruct_Z x0∀ x5 . x5RealsStruct_Npos x0field2b x0 x5 x2 = x4x3)x3)(∀ x2 . x2field0 x0∀ x3 . x3RealsStruct_Z x0∀ x4 . x4RealsStruct_Npos x0field2b x0 x4 x2 = x3x2RealsStruct_Q x0)x1)x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known RealsStruct_minus_eq2RealsStruct_minus_eq2 : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1 = explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x1
Theorem Field_RealsStruct_QField_RealsStruct_Q : ∀ x0 . RealsStruct x0Field (pack_b_b_e_e (RealsStruct_Q x0) (field1b x0) (field2b x0) (field4 x0) (RealsStruct_one x0)) (proof)
Definition RealsStruct_omega_embeddingRealsStruct_omega_embedding := λ x0 . nat_primrec (field4 x0) (λ x1 x2 . field1b x0 x2 (RealsStruct_one x0))
Param explicit_Natsexplicit_Nats : ιι(ιι) → ο
Known explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)explicit_Nats x0 x1 x2x3
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known RealsStruct_natOfOrderedFieldRealsStruct_natOfOrderedField : ∀ x0 . RealsStruct x0explicit_Nats (RealsStruct_N x0) (field4 x0) (λ x1 . field1b x0 x1 (RealsStruct_one x0))
Theorem RealsStruct_omega_embedding_NRealsStruct_omega_embedding_N : ∀ x0 . RealsStruct x0∀ x1 . x1omegaRealsStruct_omega_embedding x0 x1RealsStruct_N x0 (proof)