Search for blocks/addresses/...
Proofgold Asset
asset id
7913b8b979c808e54a40aab869cd104003c84539ba031d678d5fa2b1dc0a559d
asset hash
a25e449d3c9bffdc0515960fa1b4f509a394d9b2d9fa0d2e329b202e6977071f
bday / block
38738
tx
de4f6..
preasset
doc published by
PrCmT..
Conjecture
42fc4..
aK1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x6
(
x5
x10
x11
)
x12
x13
=
x4
Conjecture
eac1e..
aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4
Conjecture
975e1..
com__aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
=
x1
x11
x10
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4
Conjecture
79b0e..
middle_Bol__aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x1
x10
(
x2
(
x1
x11
x12
)
x10
)
=
x1
(
x3
x10
x12
)
(
x2
x11
x10
)
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4
Conjecture
edea9..
KK_Kcom__aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x5
(
x5
x10
x11
)
x12
=
x4
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x5
x11
x10
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4
Conjecture
6fb88..
T1dist__aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x1
(
x7
x10
x11
)
(
x7
x12
x11
)
=
x7
(
x1
x10
x12
)
x11
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4
Conjecture
76b60..
nil3_24
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
x6
(
x6
(
x6
x10
x11
x12
)
x13
x14
)
x15
x16
=
x4
Conjecture
6793d..
com__nil3_24
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
=
x1
x11
x10
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
x6
(
x6
(
x6
x10
x11
x12
)
x13
x14
)
x15
x16
=
x4
Conjecture
203c2..
aa1_45
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x6
(
x6
x10
x11
x12
)
x14
x13
Conjecture
bd861..
nil3_24__aa1
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
x4
∈
x0
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
=
x2
(
x1
x11
x10
)
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x5
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
=
x2
(
x1
x10
(
x1
x11
x12
)
)
(
x1
(
x1
x10
x11
)
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x6
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
=
x2
x11
(
x1
x10
x11
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x7
x10
x11
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
=
x2
(
x1
x12
x11
)
(
x1
x12
(
x1
x11
x10
)
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x8
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
=
x3
(
x1
(
x1
x10
x11
)
x12
)
(
x1
x11
x12
)
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x9
x10
x11
x12
∈
x0
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x4
x10
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
x1
x10
x4
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
(
x1
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
x10
(
x2
x10
x11
)
=
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x3
(
x1
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x1
(
x3
x10
x11
)
x11
=
x10
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
x7
(
x7
x10
x11
)
x12
=
x7
(
x7
x10
x12
)
x11
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x8
x10
x11
x12
)
x13
=
x8
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
x7
(
x9
x10
x11
x12
)
x13
=
x9
(
x7
x10
x13
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x8
(
x8
x10
x11
x12
)
x13
x14
=
x8
(
x8
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x9
(
x9
x10
x11
x12
)
x13
x14
=
x9
(
x9
x10
x13
x14
)
x11
x12
)
⟶
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
x6
(
x6
(
x6
x10
x11
x12
)
x13
x14
)
x15
x16
=
x4
)
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x6
(
x6
x10
x11
x12
)
x13
x14
=
x4