Search for blocks/addresses/...
Proofgold Asset
asset id
eadec5c4623a54e9bcbb761f291a15113c4b493a66c68187a611248a446eca53
asset hash
7a559bbd89ed8121361174b605ed6b12d8cc5604fef4a66f3253de6c337227cf
bday / block
2750
tx
3d651..
preasset
doc published by
PrGxv..
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
91630..
:
ι
→
ι
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Theorem
30652..
:
Subq
(
4ae4a..
4a7ef..
)
(
91630..
4a7ef..
)
(proof)
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Theorem
7d3c5..
:
Subq
(
91630..
4a7ef..
)
(
4ae4a..
4a7ef..
)
(proof)
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
84d8a..
:
4ae4a..
4a7ef..
=
91630..
4a7ef..
(proof)
Known
67787..
:
∀ x0 x1 .
prim1
x0
(
prim2
x0
x1
)
Known
5a932..
:
∀ x0 x1 .
prim1
x1
(
prim2
x0
x1
)
Theorem
2ea0c..
:
Subq
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
prim2
4a7ef..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
2532b..
:
∀ x0 x1 x2 .
prim1
x0
(
prim2
x1
x2
)
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
67f2b..
:
Subq
(
prim2
4a7ef..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
7e6ff..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
prim2
4a7ef..
(
4ae4a..
4a7ef..
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Known
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Theorem
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
(proof)
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
prim1
x3
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Param
ba9d8..
:
ι
→
ο
Known
f3fb5..
:
∀ x0 .
ba9d8..
x0
⟶
ordinal
x0
Known
3db81..
:
ba9d8..
(
4ae4a..
4a7ef..
)
Theorem
9c410..
:
ordinal
(
4ae4a..
4a7ef..
)
(proof)
Known
d7fe6..
:
ba9d8..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
5d775..
:
ordinal
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Param
48ef8..
:
ι
Known
a3321..
:
∀ x0 .
ba9d8..
x0
⟶
prim1
x0
48ef8..
Known
10a0b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ba9d8..
x1
Known
c2711..
:
∀ x0 .
prim1
x0
48ef8..
⟶
ba9d8..
x0
Theorem
ee316..
:
TransSet
48ef8..
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Theorem
c8a5e..
:
ordinal
48ef8..
(proof)
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Theorem
31e2d..
:
ordinal
(
4ae4a..
48ef8..
)
(proof)
Theorem
f72f7..
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
Subq
(
4ae4a..
x1
)
x0
(proof)
Theorem
7b84d..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
Subq
(
4ae4a..
x1
)
x0
(proof)
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Known
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Theorem
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
prim1
x0
x1
)
(
x0
=
x1
)
)
(
prim1
x1
x0
)
(proof)
Param
exactly1of3
:
ο
→
ο
→
ο
→
ο
Known
exactly1of3_I1
:
∀ x0 x1 x2 : ο .
x0
⟶
not
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Known
exactly1of3_I2
:
∀ x0 x1 x2 : ο .
not
x0
⟶
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
Known
exactly1of3_I3
:
∀ x0 x1 x2 : ο .
not
x0
⟶
not
x1
⟶
x2
⟶
exactly1of3
x0
x1
x2
Theorem
ordinal_trichotomy
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
exactly1of3
(
prim1
x0
x1
)
(
x0
=
x1
)
(
prim1
x1
x0
)
(proof)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
prim1
x0
x1
)
(
Subq
x1
x0
)
(proof)
Theorem
ordinal_linear
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
Subq
x0
x1
)
(
Subq
x1
x0
)
(proof)
Theorem
4f62a..
:
∀ x0 x1 .
ordinal
x0
⟶
prim1
x1
x0
⟶
or
(
prim1
(
4ae4a..
x1
)
x0
)
(
x0
=
4ae4a..
x1
)
(proof)
Theorem
74eef..
:
∀ x0 .
ordinal
x0
⟶
or
(
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
x0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
prim1
x2
x0
)
(
x0
=
4ae4a..
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Known
c79db..
:
∀ x0 .
Subq
x0
(
4ae4a..
x0
)
Theorem
09068..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
(proof)
Known
UnionE_impred
:
∀ x0 x1 .
prim1
x1
(
prim3
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
prim1
x1
x3
⟶
prim1
x3
x0
⟶
x2
)
⟶
x2
Known
UnionI
:
∀ x0 x1 x2 .
prim1
x1
x2
⟶
prim1
x2
x0
⟶
prim1
x1
(
prim3
x0
)
Theorem
ordinal_Union
:
∀ x0 .
(
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
)
⟶
ordinal
(
prim3
x0
)
(proof)
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Known
042d7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
a842e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
prim1
x2
(
x1
x4
)
)
⟶
x3
)
⟶
x3
Known
2236b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
x0
⟶
prim1
x3
(
x1
x2
)
⟶
prim1
x3
(
a842e..
x0
x1
)
Theorem
d5fb2..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
a842e..
x0
x1
)
(proof)
Param
d3786..
:
ι
→
ι
→
ι
Known
bd118..
:
∀ x0 x1 .
Subq
x0
x1
⟶
d3786..
x0
x1
=
x0
Known
d7325..
:
∀ x0 x1 .
d3786..
x0
x1
=
d3786..
x1
x0
Theorem
dec57..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
d3786..
x0
x1
)
(proof)
Param
0ac37..
:
ι
→
ι
→
ι
Known
02255..
:
∀ x0 x1 .
Subq
x0
x1
=
(
0ac37..
x0
x1
=
x1
)
Known
47e6b..
:
∀ x0 x1 .
0ac37..
x0
x1
=
0ac37..
x1
x0
Theorem
45024..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
0ac37..
x0
x1
)
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Known
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
Theorem
94de3..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x2
⟶
x1
x2
⟶
x1
x3
)
⟶
ordinal
(
1216a..
x0
x1
)
(proof)
Param
In_rec_i
:
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
→
ι
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Definition
09364..
:=
In_rec_i
(
λ x0 .
λ x1 :
ι → ι
.
0ac37..
(
91630..
4a7ef..
)
(
94f9e..
x0
x1
)
)
Known
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
Known
aff96..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
94f9e..
x0
x1
=
94f9e..
x0
x2
Theorem
23d9d..
:
∀ x0 .
09364..
x0
=
0ac37..
(
91630..
4a7ef..
)
(
94f9e..
x0
09364..
)
(proof)
Known
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
Theorem
91202..
:
∀ x0 .
prim1
4a7ef..
(
09364..
x0
)
(proof)
Known
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
2bfb0..
:
∀ x0 x1 .
prim1
x1
x0
⟶
prim1
(
09364..
x1
)
(
09364..
x0
)
(proof)
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
6acac..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
Theorem
41491..
:
∀ x0 x1 .
prim1
x1
(
09364..
x0
)
⟶
or
(
x1
=
4a7ef..
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
x1
=
09364..
x3
)
⟶
x2
)
⟶
x2
)
(proof)
Theorem
ec645..
:
∀ x0 .
09364..
x0
=
4a7ef..
⟶
∀ x1 : ο .
x1
(proof)
Theorem
69933..
:
∀ x0 .
nIn
(
09364..
x0
)
(
91630..
4a7ef..
)
(proof)
Definition
f6917..
:=
λ x0 .
94f9e..
x0
09364..
Theorem
f6cc9..
:
∀ x0 x1 .
prim1
x1
x0
⟶
prim1
(
09364..
x1
)
(
f6917..
x0
)
(proof)
Theorem
ee5e5..
:
∀ x0 x1 .
prim1
x1
(
f6917..
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
x1
=
09364..
x3
)
⟶
x2
)
⟶
x2
(proof)
Param
1ad11..
:
ι
→
ι
→
ι
Definition
158d3..
:=
In_rec_i
(
λ x0 .
94f9e..
(
1ad11..
x0
(
91630..
4a7ef..
)
)
)
Known
26c23..
:
∀ x0 x1 x2 .
prim1
x2
(
1ad11..
x0
x1
)
⟶
prim1
x2
x0
Theorem
626b2..
:
∀ x0 .
158d3..
x0
=
94f9e..
(
1ad11..
x0
(
91630..
4a7ef..
)
)
158d3..
(proof)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
017d4..
:
∀ x0 x1 x2 .
prim1
x2
(
1ad11..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
nIn
x2
x1
)
Known
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
753c4..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
nIn
x2
x1
⟶
prim1
x2
(
1ad11..
x0
x1
)
Theorem
36ac3..
:
∀ x0 .
158d3..
(
09364..
x0
)
=
x0
(proof)
Theorem
b38e0..
:
∀ x0 x1 .
09364..
x0
=
09364..
x1
⟶
x0
=
x1
(proof)
Theorem
cfee8..
:
∀ x0 .
158d3..
(
f6917..
x0
)
=
x0
(proof)
Theorem
c78f5..
:
∀ x0 x1 .
f6917..
x0
=
f6917..
x1
⟶
x0
=
x1
(proof)
Known
d4dbc..
:
∀ x0 :
ι → ι
.
94f9e..
4a7ef..
x0
=
4a7ef..
Theorem
6bdaa..
:
f6917..
4a7ef..
=
4a7ef..
(proof)
Known
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
21fb1..
:
∀ x0 x1 .
f6917..
x0
=
09364..
x1
⟶
∀ x2 : ο .
x2
(proof)
Definition
aae7a..
:=
λ x0 x1 .
0ac37..
(
94f9e..
x0
f6917..
)
(
94f9e..
x1
09364..
)
Theorem
21d47..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
(
f6917..
x2
)
(
aae7a..
x0
x1
)
(proof)
Theorem
6264f..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
(
09364..
x2
)
(
aae7a..
x0
x1
)
(proof)
Theorem
757ca..
:
∀ x0 x1 x2 .
prim1
x2
(
aae7a..
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
f6917..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
09364..
x4
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
87fed..
:
∀ x0 .
aae7a..
4a7ef..
x0
=
f6917..
x0
(proof)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Theorem
df04e..
:
∀ x0 .
aae7a..
(
4ae4a..
4a7ef..
)
x0
=
09364..
x0
(proof)
Known
839f4..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ba9d8..
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
Known
26358..
:
∀ x0 .
ba9d8..
x0
⟶
prim1
4a7ef..
(
4ae4a..
x0
)
Known
3238a..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
Known
be77e..
:
∀ x0 .
ba9d8..
x0
⟶
or
(
x0
=
4a7ef..
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
ba9d8..
x2
)
(
x0
=
4ae4a..
x2
)
⟶
x1
)
⟶
x1
)
Known
8f913..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Theorem
052e8..
:
∀ x0 .
ba9d8..
x0
⟶
aae7a..
(
4ae4a..
4a7ef..
)
x0
=
4ae4a..
x0
(proof)
Theorem
7144c..
:
aae7a..
4a7ef..
4a7ef..
=
4a7ef..
(proof)
Known
4c9b8..
:
ba9d8..
4a7ef..
Theorem
6601d..
:
aae7a..
(
4ae4a..
4a7ef..
)
4a7ef..
=
4ae4a..
4a7ef..
(proof)
Theorem
9cfb0..
:
aae7a..
(
4ae4a..
4a7ef..
)
(
4ae4a..
4a7ef..
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
5e53a..
:
∀ x0 x1 x2 x3 .
Subq
x0
x2
⟶
Subq
x1
x3
⟶
Subq
(
aae7a..
x0
x1
)
(
aae7a..
x2
x3
)
(proof)
Param
If_i
:
ο
→
ι
→
ι
→
ι
Definition
04bd5..
:=
λ x0 x1 .
λ x2 x3 :
ι → ι
.
λ x4 .
If_i
(
x4
=
f6917..
(
158d3..
x4
)
)
(
x2
(
158d3..
x4
)
)
(
x3
(
158d3..
x4
)
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
c9165..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
04bd5..
x0
x1
x2
x3
(
f6917..
x4
)
=
x2
x4
(proof)
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
0185a..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
04bd5..
x0
x1
x2
x3
(
09364..
x4
)
=
x3
x4
(proof)
Theorem
7144c..
:
aae7a..
4a7ef..
4a7ef..
=
4a7ef..
(proof)
Theorem
6601d..
:
aae7a..
(
4ae4a..
4a7ef..
)
4a7ef..
=
4ae4a..
4a7ef..
(proof)
Theorem
9cfb0..
:
aae7a..
(
4ae4a..
4a7ef..
)
(
4ae4a..
4a7ef..
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
052e8..
:
∀ x0 .
ba9d8..
x0
⟶
aae7a..
(
4ae4a..
4a7ef..
)
x0
=
4ae4a..
x0
(proof)
Param
a4c2a..
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Definition
e76d4..
:=
λ x0 .
a4c2a..
x0
(
λ x1 .
∀ x2 : ο .
(
∀ x3 .
f6917..
x3
=
x1
⟶
x2
)
⟶
x2
)
158d3..
Definition
22ca9..
:=
λ x0 .
a4c2a..
x0
(
λ x1 .
∀ x2 : ο .
(
∀ x3 .
09364..
x3
=
x1
⟶
x2
)
⟶
x2
)
158d3..
Theorem
cec21..
:
f6917..
=
aae7a..
4a7ef..
(proof)
Theorem
78070..
:
09364..
=
aae7a..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
4b3cb..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
(
aae7a..
4a7ef..
x2
)
(
aae7a..
x0
x1
)
(proof)
Theorem
2391b..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x2
)
(
aae7a..
x0
x1
)
(proof)
Theorem
2f64c..
:
∀ x0 x1 x2 .
prim1
x2
(
aae7a..
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
aae7a..
4a7ef..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
aae7a..
(
4ae4a..
4a7ef..
)
x4
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
b6093..
:
∀ x0 x1 x2 .
prim1
(
aae7a..
4a7ef..
x2
)
(
aae7a..
x0
x1
)
⟶
prim1
x2
x0
(proof)
Theorem
2f7aa..
:
∀ x0 x1 x2 .
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x2
)
(
aae7a..
x0
x1
)
⟶
prim1
x2
x1
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
261cc..
:
∀ x0 x1 x2 .
iff
(
prim1
x2
(
aae7a..
x0
x1
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
aae7a..
4a7ef..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
aae7a..
(
4ae4a..
4a7ef..
)
x4
)
⟶
x3
)
⟶
x3
)
)
(proof)
Theorem
5e53a..
:
∀ x0 x1 x2 x3 .
Subq
x0
x2
⟶
Subq
x1
x3
⟶
Subq
(
aae7a..
x0
x1
)
(
aae7a..
x2
x3
)
(proof)
Known
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
Theorem
2ef56..
:
∀ x0 x1 .
prim1
(
aae7a..
4a7ef..
x1
)
x0
⟶
prim1
x1
(
e76d4..
x0
)
(proof)
Known
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
a6d0f..
:
∀ x0 x1 .
prim1
x1
(
e76d4..
x0
)
⟶
prim1
(
aae7a..
4a7ef..
x1
)
x0
(proof)
Theorem
36427..
:
∀ x0 x1 .
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x1
)
x0
⟶
prim1
x1
(
22ca9..
x0
)
(proof)
Theorem
98a9e..
:
∀ x0 x1 .
prim1
x1
(
22ca9..
x0
)
⟶
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x1
)
x0
(proof)
Theorem
5dd0a..
:
∀ x0 x1 .
e76d4..
(
aae7a..
x0
x1
)
=
x0
(proof)
Theorem
40190..
:
∀ x0 x1 .
22ca9..
(
aae7a..
x0
x1
)
=
x1
(proof)
Theorem
cf31f..
:
∀ x0 x1 x2 x3 .
aae7a..
x0
x1
=
aae7a..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
74782..
:
∀ x0 .
Subq
(
aae7a..
(
e76d4..
x0
)
(
22ca9..
x0
)
)
x0
(proof)