Search for blocks/addresses/...

Proofgold Asset

asset id
ca4d2f17ca1510d487bfeb9d3aa1aab07584b5e8ff7745a9d7d9d07883164b79
asset hash
7a6ea7b3862a0c54fb629d936d4792931c2e949e3a70ba1adf32aa989759b02c
bday / block
25648
tx
93f04..
preasset
doc published by PrGxv..
Param intint : ι
Param mul_SNomul_SNo : ιιι
Param add_SNoadd_SNo : ιιι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Conjecture 999ba..A199750 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) x20)x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo (x4 x20) (minus_SNo x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = add_SNo 1 (x9 x20))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 2x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo 1 (x18 x20))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 3310f..A199686 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x15 x15)) x15))(∀ x15 . x15intx1 x15 = x15)x2 = add_SNo 1 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 1 (mul_SNo 2 (x4 x15)))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = add_SNo 1 2x10 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo 1 (mul_SNo 2 (x13 x15)))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture 486ec..A199682 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x15 x15)) x15))(∀ x15 . x15intx1 x15 = x15)x2 = 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 1 (x4 x15))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = 2x10 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo 1 (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture f36f1..A19958 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι → ι . (∀ x27 . x27int∀ x28 . x28intx26 x27 x28int)∀ x27 : ι → ι → ι . (∀ x28 . x28int∀ x29 . x29intx27 x28 x29int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 . x29int∀ x30 . x30int∀ x31 : ι → ι → ι → ι . (∀ x32 . x32int∀ x33 . x33int∀ x34 . x34intx31 x32 x33 x34int)∀ x32 : ι → ι → ι → ι . (∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx32 x33 x34 x35int)∀ x33 : ι → ι . (∀ x34 . x34intx33 x34int)∀ x34 : ι → ι . (∀ x35 . x35intx34 x35int)∀ x35 . x35int∀ x36 : ι → ι → ι . (∀ x37 . x37int∀ x38 . x38intx36 x37 x38int)∀ x37 : ι → ι → ι . (∀ x38 . x38int∀ x39 . x39intx37 x38 x39int)∀ x38 : ι → ι → ι . (∀ x39 . x39int∀ x40 . x40intx38 x39 x40int)∀ x39 : ι → ι → ι . (∀ x40 . x40int∀ x41 . x41intx39 x40 x41int)∀ x40 : ι → ι . (∀ x41 . x41intx40 x41int)∀ x41 . x41int∀ x42 : ι → ι → ι . (∀ x43 . x43int∀ x44 . x44intx42 x43 x44int)∀ x43 : ι → ι . (∀ x44 . x44intx43 x44int)∀ x44 : ι → ι . (∀ x45 . x45intx44 x45int)(∀ x45 . x45intx0 x45 = add_SNo (mul_SNo 2 (add_SNo x45 x45)) x45)(∀ x45 . x45intx1 x45 = x45)(∀ x45 . x45intx2 x45 = add_SNo x45 x45)(∀ x45 . x45intx3 x45 = x45)x4 = 2(∀ x45 . x45int∀ x46 . x46intx5 x45 x46 = If_i (SNoLe x45 0) x46 (x2 (x5 (add_SNo x45 (minus_SNo 1)) x46)))(∀ x45 . x45intx6 x45 = x5 (x3 x45) x4)(∀ x45 . x45intx7 x45 = add_SNo (x6 x45) (minus_SNo 1))(∀ x45 . x45int∀ x46 . x46intx8 x45 x46 = If_i (SNoLe x45 0) x46 (x0 (x8 (add_SNo x45 (minus_SNo 1)) x46)))(∀ x45 . x45intx9 x45 = x8 (x1 x45) (x7 x45))(∀ x45 . x45intx10 x45 = x9 x45)x11 = 1(∀ x45 . x45int∀ x46 . x46intx12 x45 x46 = x46)(∀ x45 . x45int∀ x46 . x46intx13 x45 x46 = If_i (SNoLe x45 0) x46 (x10 (x13 (add_SNo x45 (minus_SNo 1)) x46)))(∀ x45 . x45int∀ x46 . x46intx14 x45 x46 = x13 x11 (x12 x45 x46))(∀ x45 . x45int∀ x46 . x46intx15 x45 x46 = add_SNo (add_SNo (x14 x45 x46) (mul_SNo 2 (add_SNo (add_SNo x45 x45) x45))) x45)(∀ x45 . x45intx16 x45 = x45)x17 = 1(∀ x45 . x45int∀ x46 . x46intx18 x45 x46 = If_i (SNoLe x45 0) x46 (x15 (x18 (add_SNo x45 (minus_SNo 1)) x46) x45))(∀ x45 . x45intx19 x45 = x18 (x16 x45) x17)(∀ x45 . x45intx20 x45 = x19 x45)(∀ x45 . x45intx21 x45 = add_SNo x45 x45)(∀ x45 . x45intx22 x45 = x45)x23 = 2(∀ x45 . x45int∀ x46 . x46intx24 x45 x46 = If_i (SNoLe x45 0) x46 (x21 (x24 (add_SNo x45 (minus_SNo 1)) x46)))(∀ x45 . x45intx25 x45 = x24 (x22 x45) x23)(∀ x45 . x45int∀ x46 . x46intx26 x45 x46 = mul_SNo x45 x46)(∀ x45 . x45int∀ x46 . x46intx27 x45 x46 = x46)(∀ x45 . x45intx28 x45 = x45)x29 = 1x30 = add_SNo 1 (add_SNo 2 2)(∀ x45 . x45int∀ x46 . x46int∀ x47 . x47intx31 x45 x46 x47 = If_i (SNoLe x45 0) x46 (x26 (x31 (add_SNo x45 (minus_SNo 1)) x46 x47) (x32 (add_SNo x45 (minus_SNo 1)) x46 x47)))(∀ x45 . x45int∀ x46 . x46int∀ x47 . x47intx32 x45 x46 x47 = If_i (SNoLe x45 0) x47 (x27 (x31 (add_SNo x45 (minus_SNo 1)) x46 x47) (x32 (add_SNo x45 (minus_SNo 1)) x46 x47)))(∀ x45 . x45intx33 x45 = x31 (x28 x45) x29 x30)(∀ x45 . x45intx34 x45 = mul_SNo (add_SNo (x25 x45) (minus_SNo 1)) (x33 x45))x35 = 1(∀ x45 . x45int∀ x46 . x46intx36 x45 x46 = x46)(∀ x45 . x45int∀ x46 . x46intx37 x45 x46 = If_i (SNoLe x45 0) x46 (x34 (x37 (add_SNo x45 (minus_SNo 1)) x46)))(∀ x45 . x45int∀ x46 . x46intx38 x45 x46 = x37 x35 (x36 x45 x46))(∀ x45 . x45int∀ x46 . x46intx39 x45 x46 = add_SNo (add_SNo (x38 x45 x46) (mul_SNo 2 (add_SNo (add_SNo x45 x45) x45))) x45)(∀ x45 . x45intx40 x45 = x45)x41 = 1(∀ x45 . x45int∀ x46 . x46intx42 x45 x46 = If_i (SNoLe x45 0) x46 (x39 (x42 (add_SNo x45 (minus_SNo 1)) x46) x45))(∀ x45 . x45intx43 x45 = x42 (x40 x45) x41)(∀ x45 . x45intx44 x45 = x43 x45)∀ x45 . x45intSNoLe 0 x45x20 x45 = x44 x45
Conjecture 85c93..A199562 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20intx1 x20 = add_SNo x20 x20)x2 = 2(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = add_SNo 1 (mul_SNo 2 (x4 x20)))(∀ x20 . x20intx6 x20 = mul_SNo x20 x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 2x12 = add_SNo 1 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = add_SNo 1 (x18 x20))∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 466a5..A199559 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = add_SNo (add_SNo x15 x15) x15)(∀ x15 . x15intx1 x15 = add_SNo x15 x15)x2 = 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 1 (x4 x15))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = 2x10 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo 1 (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture dd4e8..A199552 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo x17 x17)(∀ x17 . x17intx1 x17 = add_SNo (add_SNo x17 x17) x17)x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = add_SNo 1 (mul_SNo 2 (x4 x17)))(∀ x17 . x17intx6 x17 = mul_SNo (mul_SNo x17 x17) x17)x7 = 1(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = add_SNo 1 (mul_SNo 2 (mul_SNo 2 (x15 x17))))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture e1713..A199494 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo x17 x17)(∀ x17 . x17intx1 x17 = add_SNo (add_SNo x17 x17) x17)x2 = add_SNo 1 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = add_SNo 1 (x4 x17))(∀ x17 . x17intx6 x17 = mul_SNo (mul_SNo x17 x17) x17)x7 = 1(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = add_SNo 1 (mul_SNo (add_SNo 1 2) (x15 x17)))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture 66ed4..A199416 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = add_SNo (mul_SNo 2 (add_SNo (add_SNo x15 x15) x15)) x15)(∀ x15 . x15intx1 x15 = x15)x2 = 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 1 (x4 x15))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = 2x10 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo 1 (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture 40b73..A199413 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20intx1 x20 = add_SNo 2 x20)(∀ x20 . x20intx2 x20 = add_SNo x20 x20)(∀ x20 . x20intx3 x20 = x20)x4 = 1(∀ x20 . x20int∀ x21 . x21intx5 x20 x21 = If_i (SNoLe x20 0) x21 (x2 (x5 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx6 x20 = x5 (x3 x20) x4)(∀ x20 . x20intx7 x20 = x6 x20)(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x1 x20) (x7 x20))(∀ x20 . x20intx10 x20 = add_SNo 1 (x9 x20))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = add_SNo 1 2x15 = add_SNo 2 (add_SNo 2 2)(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo 1 (mul_SNo (add_SNo 1 2) (x18 x20)))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 544f5..A199320 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = mul_SNo 2 (add_SNo (add_SNo x15 x15) x15))(∀ x15 . x15intx1 x15 = x15)x2 = add_SNo 1 (add_SNo 2 2)(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 1 (x4 x15))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = add_SNo 1 (add_SNo 2 2)x10 = add_SNo 2 (add_SNo 2 2)(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo 1 (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture f18df..A199300 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = add_SNo (mul_SNo 2 (add_SNo (add_SNo x15 x15) x15)) x15)(∀ x15 . x15intx1 x15 = x15)(∀ x15 . x15intx2 x15 = add_SNo 1 (add_SNo x15 x15))(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) (x2 x15))(∀ x15 . x15intx5 x15 = x4 x15)(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)(∀ x15 . x15intx9 x15 = add_SNo 1 (add_SNo x15 x15))x10 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) (x9 x15) x10)(∀ x15 . x15intx14 x15 = x13 x15)∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture 2d1cb..A199115 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo x17 x17)(∀ x17 . x17intx1 x17 = add_SNo x17 x17)x2 = add_SNo 1 (add_SNo 2 2)(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = add_SNo 1 (x4 x17))(∀ x17 . x17intx6 x17 = mul_SNo x17 x17)x7 = 1(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = add_SNo 1 (mul_SNo (add_SNo 1 (add_SNo 2 2)) (x15 x17)))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture 07ff8..A199107 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) (add_SNo 2 x20))x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo 1 (x4 x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = add_SNo 2 (x9 x20))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo (mul_SNo (add_SNo 1 (add_SNo 2 2)) (x18 x20)) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 9470f..A199027 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) x20)x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo (x4 x20) (minus_SNo x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = add_SNo (mul_SNo 2 (mul_SNo 2 (x9 x20))) (minus_SNo 1))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 2x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo (mul_SNo 2 (mul_SNo 2 (x18 x20))) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture ed3ab..A199024 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = add_SNo 2 (mul_SNo (add_SNo 2 x21) x20))x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo (x4 x20) (minus_SNo x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = add_SNo 1 (mul_SNo 2 (x9 x20)))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = add_SNo 1 2x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo (mul_SNo 2 (x18 x20)) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 81bcd..A199022 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = add_SNo 1 (mul_SNo (add_SNo 2 x21) x20))x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo (x4 x20) (minus_SNo x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = mul_SNo 2 (x9 x20))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = add_SNo 1 (add_SNo 2 2)x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo (x18 x20) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture a1bf9..A199020 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) (add_SNo x20 x21))x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo (x4 x20) (minus_SNo x20))(∀ x20 . x20intx6 x20 = x20)x7 = 2(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = add_SNo 1 (x9 x20))(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 2x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = add_SNo (mul_SNo 2 (x18 x20)) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 35353..A198966 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20intx1 x20 = add_SNo x20 x20)x2 = 2(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = add_SNo (mul_SNo 2 (mul_SNo 2 (x4 x20))) (minus_SNo 1))(∀ x20 . x20intx6 x20 = mul_SNo x20 x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 2x12 = add_SNo 1 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = add_SNo (mul_SNo 2 (x18 x20)) (minus_SNo 1))∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 109cc..A198965 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = mul_SNo (add_SNo 1 2) (add_SNo 1 x15))(∀ x15 . x15intx1 x15 = add_SNo x15 x15)x2 = 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = add_SNo 2 (mul_SNo 2 (x4 x15)))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))x10 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = add_SNo (x13 x15) (minus_SNo 1))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15