Search for blocks/addresses/...
Proofgold Asset
asset id
c7781238cd4c097838de0f1cddf4a733c3d35d1df437d519b3a6aef0cb10549a
asset hash
7bd7130594fab2b56e2532f20c47e697a3ecc9ede59978d5967911b26cf3283d
bday / block
12463
tx
ba872..
preasset
doc published by
PrGxv..
Param
nat_p
nat_p
:
ι
→
ο
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
diadic_rational_alt1_p
:
ι
→
ο
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Param
SNoS_
SNoS_
:
ι
→
ι
Param
omega
omega
:
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
SNo_max_of
SNo_max_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x2
x1
)
Param
SNoL
SNoL
:
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
SNoS_omega_SNoL_max_exists
SNoS_omega_SNoL_max_exists
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
or
(
SNoL
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
SNo_max_of
(
SNoL
x0
)
x2
⟶
x1
)
⟶
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
3801d..
:
∀ x0 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
(
minus_SNo
x0
)
Known
minus_SNo_Lev
minus_SNo_Lev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
minus_SNo
x0
)
=
SNoLev
x0
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_SNoLev
ordinal_SNoLev
:
∀ x0 .
ordinal
x0
⟶
SNoLev
x0
=
x0
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNo_max_ordinal
SNo_max_ordinal
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLt
x1
x0
)
⟶
ordinal
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
a89df..
:
∀ x0 .
x0
∈
omega
⟶
diadic_rational_alt1_p
x0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Definition
SNo_min_of
SNo_min_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x1
x2
)
Param
SNoR
SNoR
:
ι
→
ι
Known
SNoS_omega_SNoR_min_exists
SNoS_omega_SNoR_min_exists
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
or
(
SNoR
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
SNo_min_of
(
SNoR
x0
)
x2
⟶
x1
)
⟶
x1
)
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
double_SNo_min_1
double_SNo_min_1
:
∀ x0 x1 .
SNo
x0
⟶
SNo_min_of
(
SNoR
x0
)
x1
⟶
∀ x2 .
SNo
x2
⟶
SNoLt
x2
x0
⟶
SNoLt
(
add_SNo
x0
x0
)
(
add_SNo
x1
x2
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x2
)
(
add_SNo
x1
x4
=
add_SNo
x0
x0
)
⟶
x3
)
⟶
x3
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
double_eps_1
double_eps_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x0
=
add_SNo
x1
x2
⟶
x0
=
mul_SNo
(
eps_
1
)
(
add_SNo
x1
x2
)
Known
858c0..
:
∀ x0 x1 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
x1
⟶
diadic_rational_alt1_p
(
mul_SNo
x0
x1
)
Known
5042a..
:
∀ x0 .
x0
∈
omega
⟶
diadic_rational_alt1_p
(
eps_
x0
)
Known
nat_1
nat_1
:
nat_p
1
Known
9e46f..
:
∀ x0 x1 .
diadic_rational_alt1_p
x0
⟶
diadic_rational_alt1_p
x1
⟶
diadic_rational_alt1_p
(
add_SNo
x0
x1
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
double_SNo_max_1
double_SNo_max_1
:
∀ x0 x1 .
SNo
x0
⟶
SNo_max_of
(
SNoL
x0
)
x1
⟶
∀ x2 .
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x1
x2
)
(
add_SNo
x0
x0
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x2
)
(
add_SNo
x1
x4
=
add_SNo
x0
x0
)
⟶
x3
)
⟶
x3
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Theorem
b9dc3..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
=
x0
⟶
diadic_rational_alt1_p
x1
(proof)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
5c296..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
diadic_rational_alt1_p
x0
(proof)
Known
f05cb..
:
∀ x0 .
diadic_rational_alt1_p
x0
⟶
x0
∈
SNoS_
omega
Theorem
mul_SNo_SNoS_omega
mul_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
mul_SNo
x0
x1
∈
SNoS_
omega
(proof)
Known
SNo_foil
SNo_foil
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
mul_SNo
x0
x2
)
(
add_SNo
(
mul_SNo
x0
x3
)
(
add_SNo
(
mul_SNo
x1
x2
)
(
mul_SNo
x1
x3
)
)
)
Known
mul_SNo_minus_minus
mul_SNo_minus_minus
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
=
mul_SNo
x0
x1
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Theorem
SNo_foil_mm
SNo_foil_mm
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
(
add_SNo
x2
(
minus_SNo
x3
)
)
=
add_SNo
(
mul_SNo
x0
x2
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x1
x2
)
)
(
mul_SNo
x1
x3
)
)
)
(proof)
Known
SNo_add_SNo_3
SNo_add_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Theorem
add_SNo_3a_2b
add_SNo_3a_2b
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
add_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
(
add_SNo
x3
x4
)
=
add_SNo
(
add_SNo
x4
(
add_SNo
x1
x2
)
)
(
add_SNo
x3
x0
)
(proof)
Param
real
real
:
ι
Param
abs_SNo
abs_SNo
:
ι
→
ι
Known
real_E
real_E
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoS_
omega
)
(
and
(
SNoLt
x4
x0
)
(
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Param
SNoCutP
SNoCutP
:
ι
→
ι
→
ο
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Known
mul_SNo_eq_3
mul_SNo_eq_3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
SNoCutP
x3
x4
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
mul_SNo
x0
x1
=
SNoCut
x3
x4
⟶
x2
)
⟶
x2
Known
SNoS_ordsucc_omega_bdd_eps_pos
SNoS_ordsucc_omega_bdd_eps_pos
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
0
x0
⟶
SNoLt
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
(
mul_SNo
(
eps_
x2
)
x0
)
1
)
⟶
x1
)
⟶
x1
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SNo_1
SNo_1
:
SNo
1
Known
pos_mul_SNo_Lt'
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
0
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
SNo_eps_decr
SNo_eps_decr
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
(
eps_
x0
)
(
eps_
x1
)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
SNo_prereal_incr_lower_approx
SNo_prereal_incr_lower_approx
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
setexp
(
SNoS_
omega
)
omega
)
(
∀ x3 .
x3
∈
omega
⟶
and
(
and
(
SNoLt
(
ap
x2
x3
)
x0
)
(
SNoLt
x0
(
add_SNo
(
ap
x2
x3
)
(
eps_
x3
)
)
)
)
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x4
)
(
ap
x2
x3
)
)
)
⟶
x1
)
⟶
x1
Known
SNo_prereal_decr_upper_approx
SNo_prereal_decr_upper_approx
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
setexp
(
SNoS_
omega
)
omega
)
(
∀ x3 .
x3
∈
omega
⟶
and
(
and
(
SNoLt
(
add_SNo
(
ap
x2
x3
)
(
minus_SNo
(
eps_
x3
)
)
)
x0
)
(
SNoLt
x0
(
ap
x2
x3
)
)
)
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x3
)
(
ap
x2
x4
)
)
)
⟶
x1
)
⟶
x1
Known
SNo_approx_real_lem
SNo_approx_real_lem
:
∀ x0 .
x0
∈
setexp
(
SNoS_
omega
)
omega
⟶
∀ x1 .
x1
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
ap
x0
x2
)
(
ap
x1
x3
)
)
⟶
∀ x2 : ο .
(
SNoCutP
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
⟶
SNo
(
SNoCut
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
)
⟶
SNoLev
(
SNoCut
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
)
∈
ordsucc
omega
⟶
SNoCut
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
∈
SNoS_
(
ordsucc
omega
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
ap
x0
x3
)
(
SNoCut
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
SNoCut
(
prim5
omega
(
ap
x0
)
)
(
prim5
omega
(
ap
x1
)
)
)
(
ap
x1
x3
)
)
⟶
x2
)
⟶
x2
Known
SNo_approx_real
SNo_approx_real
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
setexp
(
SNoS_
omega
)
omega
⟶
∀ x2 .
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
ap
x1
x3
)
x0
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x1
x3
)
(
eps_
x3
)
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x1
x4
)
(
ap
x1
x3
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
x0
(
ap
x2
x3
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x3
)
(
ap
x2
x4
)
)
⟶
x0
=
SNoCut
(
prim5
omega
(
ap
x1
)
)
(
prim5
omega
(
ap
x2
)
)
⟶
x0
∈
real
Known
SNoCut_ext
SNoCut_ext
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
(
SNoCut
x2
x3
)
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
SNoLt
x4
(
SNoCut
x0
x1
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoCut
x0
x1
=
SNoCut
x2
x3
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_minus_Le2
add_SNo_minus_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Known
minus_add_SNo_distr_3
minus_add_SNo_distr_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
minus_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
=
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
minus_SNo
x2
)
)
Known
mul_SNo_eps_eps_add_SNo
mul_SNo_eps_eps_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
(
eps_
x0
)
(
eps_
x1
)
=
eps_
(
add_SNo
x0
x1
)
Known
nonneg_mul_SNo_Le2
nonneg_mul_SNo_Le2
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
SNoLe
x0
x2
⟶
SNoLe
x1
x3
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Known
add_SNo_assoc_4
add_SNo_assoc_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
=
add_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
x3
Known
add_SNo_minus_Le2b
add_SNo_minus_Le2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
add_SNo_rotate_4_1
add_SNo_rotate_4_1
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
=
add_SNo
x3
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
SNo_prereal_incr_lower_pos
SNo_prereal_incr_lower_pos
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
SNoS_
omega
⟶
SNoLt
0
x3
⟶
SNoLt
x3
x0
⟶
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
⟶
x2
)
⟶
x2
Known
pos_mul_SNo_Lt2
pos_mul_SNo_Lt2
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
x0
x2
⟶
SNoLt
x1
x3
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
eps_ordsucc_half_add
eps_ordsucc_half_add
:
∀ x0 .
nat_p
x0
⟶
add_SNo
(
eps_
(
ordsucc
x0
)
)
(
eps_
(
ordsucc
x0
)
)
=
eps_
x0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
add_SNo_1_ordsucc
add_SNo_1_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
add_SNo
x0
1
=
ordsucc
x0
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Known
add_SNo_Lt4
add_SNo_Lt4
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNoLt
x0
x3
⟶
SNoLt
x1
x4
⟶
SNoLt
x2
x5
⟶
SNoLt
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
(
add_SNo
x3
(
add_SNo
x4
x5
)
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_Lt1_pos_Lt
mul_SNo_Lt1_pos_Lt
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
1
⟶
SNoLt
0
x1
⟶
SNoLt
(
mul_SNo
x0
x1
)
x1
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
mul_SNo_Le1_nonneg_Le
mul_SNo_Le1_nonneg_Le
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
1
⟶
SNoLe
0
x1
⟶
SNoLe
(
mul_SNo
x0
x1
)
x1
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
eps_bd_1
eps_bd_1
:
∀ x0 .
x0
∈
omega
⟶
SNoLe
(
eps_
x0
)
1
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
SNo_2
SNo_2
:
SNo
2
Known
SNoLt_1_2
SNoLt_1_2
:
SNoLt
1
2
Known
nat_2
nat_2
:
nat_p
2
Known
mul_SNo_SNoL_interpolate_impred
mul_SNo_SNoL_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
x3
Known
SNo_abs_SNo
SNo_abs_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
abs_SNo
x0
)
Known
abs_SNo_dist_swap
abs_SNo_dist_swap
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
abs_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
=
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
pos_abs_SNo
pos_abs_SNo
:
∀ x0 .
SNoLt
0
x0
⟶
abs_SNo
x0
=
x0
Known
SNoLt_minus_pos
SNoLt_minus_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
0
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_minus_SNo_prop5
add_SNo_minus_SNo_prop5
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
(
add_SNo
x2
x3
)
=
add_SNo
x0
(
add_SNo
x1
x3
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Known
mul_SNo_SNoR_interpolate_impred
mul_SNo_SNoR_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
x3
Known
SNo_add_SNo_4
SNo_add_SNo_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
omega_TransSet
omega_TransSet
:
TransSet
omega
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
Theorem
real_mul_SNo_pos
real_mul_SNo_pos
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
mul_SNo
x0
x1
∈
real
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
real_0
real_0
:
0
∈
real
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
Theorem
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
(proof)
Known
nonneg_abs_SNo
nonneg_abs_SNo
:
∀ x0 .
SNoLe
0
x0
⟶
abs_SNo
x0
=
x0
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Theorem
abs_SNo_intvl_bd
abs_SNo_intvl_bd
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
(
add_SNo
x0
x2
)
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
x2
(proof)
Known
real_SNoS_omega_prop
real_SNoS_omega_prop
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
Theorem
73c92..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
(
∀ x1 .
x1
∈
omega
⟶
SNoLt
(
abs_SNo
x0
)
(
eps_
x1
)
)
⟶
x0
=
0
(proof)
Known
real_1
real_1
:
1
∈
real
Theorem
569c3..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
(
∀ x1 .
x1
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x0
(
minus_SNo
1
)
)
)
(
eps_
x1
)
)
⟶
x0
=
1
(proof)