Search for blocks/addresses/...
Proofgold Asset
asset id
4d9d75f4470c4675166229c3cef37130f88d5390556bf3838a8158307673126e
asset hash
7c12ae78f4bceab6d03b27eac25fe3e3d757d330921c43b4f9e14a26062e6442
bday / block
12391
tx
8b3c6..
preasset
doc published by
PrGxv..
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Theorem
binunionE'
binunionE
:
∀ x0 x1 x2 .
∀ x3 : ο .
(
x2
∈
x0
⟶
x3
)
⟶
(
x2
∈
x1
⟶
x3
)
⟶
x2
∈
binunion
x0
x1
⟶
x3
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
ReplE'
ReplE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
x2
(
x1
x3
)
)
⟶
∀ x3 .
x3
∈
prim5
x0
x1
⟶
x2
x3
(proof)
Theorem
04306..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 :
ι → ο
.
(
∀ x5 .
x5
∈
x0
⟶
x4
(
x2
x5
)
)
⟶
(
∀ x5 .
x5
∈
x1
⟶
x4
(
x3
x5
)
)
⟶
∀ x5 .
x5
∈
binunion
(
prim5
x0
x2
)
(
prim5
x1
x3
)
⟶
x4
x5
(proof)
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
SNo_extend0
SNo_extend0
:
ι
→
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_extend0_SNo
SNo_extend0_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
SNo_extend0
x0
)
Known
SNoLtI2
SNoLtI2
:
∀ x0 x1 .
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
SNoLt
x0
x1
Known
SNo_extend0_SNoLev
SNo_extend0_SNoLev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
SNo_extend0
x0
)
=
ordsucc
(
SNoLev
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
SNoEq_tra_
SNoEq_tra_
:
∀ x0 x1 x2 x3 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x3
⟶
SNoEq_
x0
x1
x3
Param
ordinal
ordinal
:
ι
→
ο
Known
SNoEq_antimon_
SNoEq_antimon_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 x3 .
SNoEq_
x0
x2
x3
⟶
SNoEq_
x1
x2
x3
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
SNoEq_sym_
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
Known
SNo_extend0_SNoEq
SNo_extend0_SNoEq
:
∀ x0 .
SNo
x0
⟶
SNoEq_
(
SNoLev
x0
)
(
SNo_extend0
x0
)
x0
Known
SNoEq_E2
SNoEq_E2
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
x3
∈
x2
⟶
x3
∈
x1
Known
binintersectE2
binintersectE2
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x1
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
f7eb7..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
(
SNoLev
x0
)
⟶
SNoLt
(
SNo_extend0
x0
)
x1
⟶
SNoLe
x0
x1
(proof)
Param
SNo_extend1
SNo_extend1
:
ι
→
ι
Known
SNo_extend1_SNo
SNo_extend1_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
SNo_extend1
x0
)
Known
SNoLtI3
SNoLtI3
:
∀ x0 x1 .
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
SNoLt
x0
x1
Known
SNo_extend1_SNoLev
SNo_extend1_SNoLev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
SNo_extend1
x0
)
=
ordsucc
(
SNoLev
x0
)
Known
SNo_extend1_SNoEq
SNo_extend1_SNoEq
:
∀ x0 .
SNo
x0
⟶
SNoEq_
(
SNoLev
x0
)
(
SNo_extend1
x0
)
x0
Known
SNoEq_E1
SNoEq_E1
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
x3
∈
x1
⟶
x3
∈
x2
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Theorem
3f795..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
(
SNoLev
x0
)
⟶
SNoLt
x1
(
SNo_extend1
x0
)
⟶
SNoLe
x1
x0
(proof)