Search for blocks/addresses/...

Proofgold Asset

asset id
a78926cbe00a8a0425102b34de93e7157c99ca2607bc064aeff4c77b49781de1
asset hash
7c21c93b3882e63ede0001d5eaf2851bc472f2d5455f2ea8ef078eaa040b51b0
bday / block
4904
tx
3fdf8..
preasset
doc published by Pr6Pc..
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Definition pack_epack_e := λ x0 x1 . lam 2 (λ x2 . If_i (x2 = 0) x0 x1)
Param apap : ιιι
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Theorem pack_e_0_eqpack_e_0_eq : ∀ x0 x1 x2 . x0 = pack_e x1 x2x1 = ap x0 0 (proof)
Theorem pack_e_0_eq2pack_e_0_eq2 : ∀ x0 x1 . x0 = ap (pack_e x0 x1) 0 (proof)
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Theorem pack_e_1_eqpack_e_1_eq : ∀ x0 x1 x2 . x0 = pack_e x1 x2x2 = ap x0 1 (proof)
Theorem pack_e_1_eq2pack_e_1_eq2 : ∀ x0 x1 . x1 = ap (pack_e x0 x1) 1 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem pack_e_injpack_e_inj : ∀ x0 x1 x2 x3 . pack_e x0 x2 = pack_e x1 x3and (x0 = x1) (x2 = x3) (proof)
Definition struct_estruct_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 x3 . x3x2x1 (pack_e x2 x3))x1 x0
Theorem pack_struct_e_Ipack_struct_e_I : ∀ x0 x1 . x1x0struct_e (pack_e x0 x1) (proof)
Theorem pack_struct_e_E1pack_struct_e_E1 : ∀ x0 x1 . struct_e (pack_e x0 x1)x1x0 (proof)
Theorem struct_e_etastruct_e_eta : ∀ x0 . struct_e x0x0 = pack_e (ap x0 0) (ap x0 1) (proof)
Definition unpack_e_iunpack_e_i := λ x0 . λ x1 : ι → ι → ι . x1 (ap x0 0) (ap x0 1)
Theorem unpack_e_i_equnpack_e_i_eq : ∀ x0 : ι → ι → ι . ∀ x1 x2 . unpack_e_i (pack_e x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_e_ounpack_e_o := λ x0 . λ x1 : ι → ι → ο . x1 (ap x0 0) (ap x0 1)
Theorem unpack_e_o_equnpack_e_o_eq : ∀ x0 : ι → ι → ο . ∀ x1 x2 . unpack_e_o (pack_e x1 x2) x0 = x0 x1 x2 (proof)
Definition pack_upack_u := λ x0 . λ x1 : ι → ι . lam 2 (λ x2 . If_i (x2 = 0) x0 (lam x0 x1))
Theorem pack_u_0_eqpack_u_0_eq : ∀ x0 x1 . ∀ x2 : ι → ι . x0 = pack_u x1 x2x1 = ap x0 0 (proof)
Theorem pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0 (proof)
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem pack_u_1_eqpack_u_1_eq : ∀ x0 x1 . ∀ x2 : ι → ι . x0 = pack_u x1 x2∀ x3 . x3x1x2 x3 = ap (ap x0 1) x3 (proof)
Theorem pack_u_1_eq2pack_u_1_eq2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2 = ap (ap (pack_u x0 x1) 1) x2 (proof)
Theorem pack_u_injpack_u_inj : ∀ x0 x1 . ∀ x2 x3 : ι → ι . pack_u x0 x2 = pack_u x1 x3and (x0 = x1) (∀ x4 . x4x0x2 x4 = x3 x4) (proof)
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem pack_u_extpack_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)pack_u x0 x1 = pack_u x0 x2 (proof)
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Theorem pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)struct_u (pack_u x0 x1) (proof)
Theorem pack_struct_u_E1pack_struct_u_E1 : ∀ x0 . ∀ x1 : ι → ι . struct_u (pack_u x0 x1)∀ x2 . x2x0x1 x2x0 (proof)
Theorem struct_u_etastruct_u_eta : ∀ x0 . struct_u x0x0 = pack_u (ap x0 0) (ap (ap x0 1)) (proof)
Definition unpack_u_iunpack_u_i := λ x0 . λ x1 : ι → (ι → ι) → ι . x1 (ap x0 0) (ap (ap x0 1))
Theorem unpack_u_i_equnpack_u_i_eq : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_i (pack_u x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_u_ounpack_u_o := λ x0 . λ x1 : ι → (ι → ι) → ο . x1 (ap x0 0) (ap (ap x0 1))
Theorem unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2 (proof)
Param encode_bencode_b : ιCT2 ι
Definition pack_bpack_b := λ x0 . λ x1 : ι → ι → ι . lam 2 (λ x2 . If_i (x2 = 0) x0 (encode_b x0 x1))
Theorem pack_b_0_eqpack_b_0_eq : ∀ x0 x1 . ∀ x2 : ι → ι → ι . x0 = pack_b x1 x2x1 = ap x0 0 (proof)
Theorem pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0 (proof)
Param decode_bdecode_b : ιιιι
Known decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3
Theorem pack_b_1_eqpack_b_1_eq : ∀ x0 x1 . ∀ x2 : ι → ι → ι . x0 = pack_b x1 x2∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4 = decode_b (ap x0 1) x3 x4 (proof)
Theorem pack_b_1_eq2pack_b_1_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3 = decode_b (ap (pack_b x0 x1) 1) x2 x3 (proof)
Theorem pack_b_injpack_b_inj : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . pack_b x0 x2 = pack_b x1 x3and (x0 = x1) (∀ x4 . x4x0∀ x5 . x5x0x2 x4 x5 = x3 x4 x5) (proof)
Known encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)encode_b x0 x1 = encode_b x0 x2
Theorem pack_b_extpack_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)pack_b x0 x1 = pack_b x0 x2 (proof)
Definition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)x1 (pack_b x2 x3))x1 x0
Theorem pack_struct_b_Ipack_struct_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)struct_b (pack_b x0 x1) (proof)
Theorem pack_struct_b_E1pack_struct_b_E1 : ∀ x0 . ∀ x1 : ι → ι → ι . struct_b (pack_b x0 x1)∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0 (proof)
Theorem struct_b_etastruct_b_eta : ∀ x0 . struct_b x0x0 = pack_b (ap x0 0) (decode_b (ap x0 1)) (proof)
Definition unpack_b_iunpack_b_i := λ x0 . λ x1 : ι → (ι → ι → ι) → ι . x1 (ap x0 0) (decode_b (ap x0 1))
Theorem unpack_b_i_equnpack_b_i_eq : ∀ x0 : ι → (ι → ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_i (pack_b x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_b_ounpack_b_o := λ x0 . λ x1 : ι → (ι → ι → ι) → ο . x1 (ap x0 0) (decode_b (ap x0 1))
Theorem unpack_b_o_equnpack_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_o (pack_b x1 x2) x0 = x0 x1 x2 (proof)
Param SepSep : ι(ιο) → ι
Definition pack_ppack_p := λ x0 . λ x1 : ι → ο . lam 2 (λ x2 . If_i (x2 = 0) x0 (Sep x0 x1))
Theorem pack_p_0_eqpack_p_0_eq : ∀ x0 x1 . ∀ x2 : ι → ο . x0 = pack_p x1 x2x1 = ap x0 0 (proof)
Theorem pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0 (proof)
Param decode_pdecode_p : ιιο
Known decode_encode_pdecode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0decode_p (Sep x0 x1) x2 = x1 x2
Theorem pack_p_1_eqpack_p_1_eq : ∀ x0 x1 . ∀ x2 : ι → ο . x0 = pack_p x1 x2∀ x3 . x3x1x2 x3 = decode_p (ap x0 1) x3 (proof)
Theorem pack_p_1_eq2pack_p_1_eq2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2 = decode_p (ap (pack_p x0 x1) 1) x2 (proof)
Theorem pack_p_injpack_p_inj : ∀ x0 x1 . ∀ x2 x3 : ι → ο . pack_p x0 x2 = pack_p x1 x3and (x0 = x1) (∀ x4 . x4x0x2 x4 = x3 x4) (proof)
Param iffiff : οοο
Known encode_p_extencode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))Sep x0 x1 = Sep x0 x2
Theorem pack_p_extpack_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))pack_p x0 x1 = pack_p x0 x2 (proof)
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Theorem pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1) (proof)
Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0
Theorem struct_p_etastruct_p_eta : ∀ x0 . struct_p x0x0 = pack_p (ap x0 0) (decode_p (ap x0 1)) (proof)
Definition unpack_p_iunpack_p_i := λ x0 . λ x1 : ι → (ι → ο) → ι . x1 (ap x0 0) (decode_p (ap x0 1))
Theorem unpack_p_i_equnpack_p_i_eq : ∀ x0 : ι → (ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_i (pack_p x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_p_ounpack_p_o := λ x0 . λ x1 : ι → (ι → ο) → ο . x1 (ap x0 0) (decode_p (ap x0 1))
Theorem unpack_p_o_equnpack_p_o_eq : ∀ x0 : ι → (ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_o (pack_p x1 x2) x0 = x0 x1 x2 (proof)
Param encode_rencode_r : ι(ιιο) → ι
Definition pack_rpack_r := λ x0 . λ x1 : ι → ι → ο . lam 2 (λ x2 . If_i (x2 = 0) x0 (encode_r x0 x1))
Theorem pack_r_0_eqpack_r_0_eq : ∀ x0 x1 . ∀ x2 : ι → ι → ο . x0 = pack_r x1 x2x1 = ap x0 0 (proof)
Theorem pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0 (proof)
Param decode_rdecode_r : ιιιο
Known decode_encode_rdecode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2x0∀ x3 . x3x0decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3
Theorem pack_r_1_eqpack_r_1_eq : ∀ x0 x1 . ∀ x2 : ι → ι → ο . x0 = pack_r x1 x2∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4 = decode_r (ap x0 1) x3 x4 (proof)
Theorem pack_r_1_eq2pack_r_1_eq2 : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3 = decode_r (ap (pack_r x0 x1) 1) x2 x3 (proof)
Theorem pack_r_injpack_r_inj : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . pack_r x0 x2 = pack_r x1 x3and (x0 = x1) (∀ x4 . x4x0∀ x5 . x5x0x2 x4 x5 = x3 x4 x5) (proof)
Known encode_r_extencode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))encode_r x0 x1 = encode_r x0 x2
Theorem pack_r_extpack_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))pack_r x0 x1 = pack_r x0 x2 (proof)
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Theorem pack_struct_r_Ipack_struct_r_I : ∀ x0 . ∀ x1 : ι → ι → ο . struct_r (pack_r x0 x1) (proof)
Theorem struct_r_etastruct_r_eta : ∀ x0 . struct_r x0x0 = pack_r (ap x0 0) (decode_r (ap x0 1)) (proof)
Definition unpack_r_iunpack_r_i := λ x0 . λ x1 : ι → (ι → ι → ο) → ι . x1 (ap x0 0) (decode_r (ap x0 1))
Theorem unpack_r_i_equnpack_r_i_eq : ∀ x0 : ι → (ι → ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_i (pack_r x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_r_ounpack_r_o := λ x0 . λ x1 : ι → (ι → ι → ο) → ο . x1 (ap x0 0) (decode_r (ap x0 1))
Theorem unpack_r_o_equnpack_r_o_eq : ∀ x0 : ι → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_o (pack_r x1 x2) x0 = x0 x1 x2 (proof)
Param encode_cencode_c : ι((ιο) → ο) → ι
Definition pack_cpack_c := λ x0 . λ x1 : (ι → ο) → ο . lam 2 (λ x2 . If_i (x2 = 0) x0 (encode_c x0 x1))
Theorem pack_c_0_eqpack_c_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . x0 = pack_c x1 x2x1 = ap x0 0 (proof)
Theorem pack_c_0_eq2pack_c_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . x0 = ap (pack_c x0 x1) 0 (proof)
Param decode_cdecode_c : ι(ιο) → ο
Known decode_encode_cdecode_encode_c : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3x3x0)decode_c (encode_c x0 x1) x2 = x1 x2
Theorem pack_c_1_eqpack_c_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . x0 = pack_c x1 x2∀ x3 : ι → ο . (∀ x4 . x3 x4x4x1)x2 x3 = decode_c (ap x0 1) x3 (proof)
Theorem pack_c_1_eq2pack_c_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3x3x0)x1 x2 = decode_c (ap (pack_c x0 x1) 1) x2 (proof)
Theorem pack_c_injpack_c_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . pack_c x0 x2 = pack_c x1 x3and (x0 = x1) (∀ x4 : ι → ο . (∀ x5 . x4 x5x5x0)x2 x4 = x3 x4) (proof)
Known encode_c_extencode_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3))encode_c x0 x1 = encode_c x0 x2
Theorem pack_c_extpack_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3))pack_c x0 x1 = pack_c x0 x2 (proof)
Definition struct_cstruct_c := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . x1 (pack_c x2 x3))x1 x0
Theorem pack_struct_c_Ipack_struct_c_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . struct_c (pack_c x0 x1) (proof)
Theorem struct_c_etastruct_c_eta : ∀ x0 . struct_c x0x0 = pack_c (ap x0 0) (decode_c (ap x0 1)) (proof)
Definition unpack_c_iunpack_c_i := λ x0 . λ x1 : ι → ((ι → ο) → ο) → ι . x1 (ap x0 0) (decode_c (ap x0 1))
Theorem unpack_c_i_equnpack_c_i_eq : ∀ x0 : ι → ((ι → ο) → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_c_i (pack_c x1 x2) x0 = x0 x1 x2 (proof)
Definition unpack_c_ounpack_c_o := λ x0 . λ x1 : ι → ((ι → ο) → ο) → ο . x1 (ap x0 0) (decode_c (ap x0 1))
Theorem unpack_c_o_equnpack_c_o_eq : ∀ x0 : ι → ((ι → ο) → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_c_o (pack_c x1 x2) x0 = x0 x1 x2 (proof)