Search for blocks/addresses/...

Proofgold Asset

asset id
7c45527489d86479534b1dff598f9da3b34fa3c12ec9039136f90dbceaee5ba2
asset hash
5307a19c24552712dad6248ea142698ad5d0e9f3a674deca26321b831f8ac758
bday / block
36347
tx
50889..
preasset
doc published by PrCmT..
Definition csect := csect
Definition cinv := cinv
Definition ccic := ccic
Definition ciso := ciso
Definition c0 := c0
Definition csupp := csupp
Definition wex := wex
Definition wfn := wfn
Definition wrex := wrex
Definition cpw := cpw
Definition cresc := cresc
Definition cress := cress
Definition csts := csts
Definition csubc := csubc
Definition cab := cab
Definition chomf := chomf
Definition cssc := cssc
Definition wsbcwsbc := wsbc
Definition w3a := w3a
Definition wf := wf
Definition cmap := cmap
Definition ccid := ccid
Definition cidfu := cidfu
Definition cid := cid
Definition ccofu := ccofu
Definition cresf := cresf
Definition cvv := cvv
Definition cdm := cdm
Definition cres := cres
Definition cful := cful
Definition crn := crn
Definition cfth := cfth
Definition copab := copab
Definition wa := wa
Definition wbr := wbr
Definition wfun := wfun
Definition ccnv := ccnv
Definition cixp := cixp
Definition cfuc := cfuc
Definition ctp := ctp
Definition cnx := cnx
Definition cxp := cxp
Definition cfunc := cfunc
Definition csb := csb
Definition c2nd := c2nd
Definition cmpt2 := cmpt2
Definition cnat := cnat
Definition cop := cop
Definition cco := cco
Definition crab := crab
Definition wral := wral
Definition weu := weu
Definition wcel := wcel
Definition co := co
Definition chom := chom
Definition cbs := cbs
Definition czeroo := czeroo
Definition cmpt := cmpt
Definition ccat := ccat
Definition cin := cin
Definition cinito := cinito
Definition cfv := cfv
Definition cv := cv
Definition ctermo := ctermo
Definition wceqwceq := wceq
Definition cdoma := cdoma
Definition ccom := ccom
Definition c1st := c1st
Known df_inv__df_iso__df_cic__df_ssc__df_resc__df_subc__df_func__df_idfu__df_cofu__df_resf__df_full__df_fth__df_nat__df_fuc__df_inito__df_termo__df_zeroo__df_doma : ∀ x0 : ο . (wceq cinv (cmpt (λ x1 . ccat) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cin (co (cv x2) (cv x3) (cfv (cv x1) csect)) (ccnv (co (cv x3) (cv x2) (cfv (cv x1) csect))))))wceq ciso (cmpt (λ x1 . ccat) (λ x1 . ccom (cmpt (λ x2 . cvv) (λ x2 . cdm (cv x2))) (cfv (cv x1) cinv)))wceq ccic (cmpt (λ x1 . ccat) (λ x1 . co (cfv (cv x1) ciso) c0 csupp))wceq cssc (copab (λ x1 x2 . wex (λ x3 . wa (wfn (cv x2) (cxp (cv x3) (cv x3))) (wrex (λ x4 . wcel (cv x1) (cixp (λ x5 . cxp (cv x4) (cv x4)) (λ x5 . cpw (cfv (cv x5) (cv x2))))) (λ x4 . cpw (cv x3))))))wceq cresc (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . co (co (cv x1) (cdm (cdm (cv x2))) cress) (cop (cfv cnx chom) (cv x2)) csts))wceq csubc (cmpt (λ x1 . ccat) (λ x1 . cab (λ x2 . wa (wbr (cv x2) (cfv (cv x1) chomf) cssc) (wsbc (λ x3 . wral (λ x4 . wa (wcel (cfv (cv x4) (cfv (cv x1) ccid)) (co (cv x4) (cv x4) (cv x2))) (wral (λ x5 . wral (λ x6 . wral (λ x7 . wral (λ x8 . wcel (co (cv x8) (cv x7) (co (cop (cv x4) (cv x5)) (cv x6) (cfv (cv x1) cco))) (co (cv x4) (cv x6) (cv x2))) (λ x8 . co (cv x5) (cv x6) (cv x2))) (λ x7 . co (cv x4) (cv x5) (cv x2))) (λ x6 . cv x3)) (λ x5 . cv x3))) (λ x4 . cv x3)) (cdm (cdm (cv x2)))))))wceq cfunc (cmpt2 (λ x1 x2 . ccat) (λ x1 x2 . ccat) (λ x1 x2 . copab (λ x3 x4 . wsbc (λ x5 . w3a (wf (cv x5) (cfv (cv x2) cbs) (cv x3)) (wcel (cv x4) (cixp (λ x6 . cxp (cv x5) (cv x5)) (λ x6 . co (co (cfv (cfv (cv x6) c1st) (cv x3)) (cfv (cfv (cv x6) c2nd) (cv x3)) (cfv (cv x2) chom)) (cfv (cv x6) (cfv (cv x1) chom)) cmap))) (wral (λ x6 . wa (wceq (cfv (cfv (cv x6) (cfv (cv x1) ccid)) (co (cv x6) (cv x6) (cv x4))) (cfv (cfv (cv x6) (cv x3)) (cfv (cv x2) ccid))) (wral (λ x7 . wral (λ x8 . wral (λ x9 . wral (λ x10 . wceq (cfv (co (cv x10) (cv x9) (co (cop (cv x6) (cv x7)) (cv x8) (cfv (cv x1) cco))) (co (cv x6) (cv x8) (cv x4))) (co (cfv (cv x10) (co (cv x7) (cv x8) (cv x4))) (cfv (cv x9) (co (cv x6) (cv x7) (cv x4))) (co (cop (cfv (cv x6) (cv x3)) (cfv (cv x7) (cv x3))) (cfv (cv x8) (cv x3)) (cfv (cv x2) cco)))) (λ x10 . co (cv x7) (cv x8) (cfv (cv x1) chom))) (λ x9 . co (cv x6) (cv x7) (cfv (cv x1) chom))) (λ x8 . cv x5)) (λ x7 . cv x5))) (λ x6 . cv x5))) (cfv (cv x1) cbs))))wceq cidfu (cmpt (λ x1 . ccat) (λ x1 . csb (cfv (cv x1) cbs) (λ x2 . cop (cres cid (cv x2)) (cmpt (λ x3 . cxp (cv x2) (cv x2)) (λ x3 . cres cid (cfv (cv x3) (cfv (cv x1) chom)))))))wceq ccofu (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cop (ccom (cfv (cv x1) c1st) (cfv (cv x2) c1st)) (cmpt2 (λ x3 x4 . cdm (cdm (cfv (cv x2) c2nd))) (λ x3 x4 . cdm (cdm (cfv (cv x2) c2nd))) (λ x3 x4 . ccom (co (cfv (cv x3) (cfv (cv x2) c1st)) (cfv (cv x4) (cfv (cv x2) c1st)) (cfv (cv x1) c2nd)) (co (cv x3) (cv x4) (cfv (cv x2) c2nd))))))wceq cresf (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cop (cres (cfv (cv x1) c1st) (cdm (cdm (cv x2)))) (cmpt (λ x3 . cdm (cv x2)) (λ x3 . cres (cfv (cv x3) (cfv (cv x1) c2nd)) (cfv (cv x3) (cv x2))))))wceq cful (cmpt2 (λ x1 x2 . ccat) (λ x1 x2 . ccat) (λ x1 x2 . copab (λ x3 x4 . wa (wbr (cv x3) (cv x4) (co (cv x1) (cv x2) cfunc)) (wral (λ x5 . wral (λ x6 . wceq (crn (co (cv x5) (cv x6) (cv x4))) (co (cfv (cv x5) (cv x3)) (cfv (cv x6) (cv x3)) (cfv (cv x2) chom))) (λ x6 . cfv (cv x1) cbs)) (λ x5 . cfv (cv x1) cbs)))))wceq cfth (cmpt2 (λ x1 x2 . ccat) (λ x1 x2 . ccat) (λ x1 x2 . copab (λ x3 x4 . wa (wbr (cv x3) (cv x4) (co (cv x1) (cv x2) cfunc)) (wral (λ x5 . wral (λ x6 . wfun (ccnv (co (cv x5) (cv x6) (cv x4)))) (λ x6 . cfv (cv x1) cbs)) (λ x5 . cfv (cv x1) cbs)))))wceq cnat (cmpt2 (λ x1 x2 . ccat) (λ x1 x2 . ccat) (λ x1 x2 . cmpt2 (λ x3 x4 . co (cv x1) (cv x2) cfunc) (λ x3 x4 . co (cv x1) (cv x2) cfunc) (λ x3 x4 . csb (cfv (cv x3) c1st) (λ x5 . csb (cfv (cv x4) c1st) (λ x6 . crab (λ x7 . wral (λ x8 . wral (λ x9 . wral (λ x10 . wceq (co (cfv (cv x9) (cv x7)) (cfv (cv x10) (co (cv x8) (cv x9) (cfv (cv x3) c2nd))) (co (cop (cfv (cv x8) (cv x5)) (cfv (cv x9) (cv x5))) (cfv (cv x9) (cv x6)) (cfv (cv x2) cco))) (co (cfv (cv x10) (co (cv x8) (cv x9) (cfv (cv x4) c2nd))) (cfv (cv x8) (cv x7)) (co (cop (cfv (cv x8) (cv x5)) (cfv (cv x8) (cv x6))) (cfv (cv x9) (cv x6)) (cfv (cv x2) cco)))) (λ x10 . co (cv x8) (cv x9) (cfv (cv x1) chom))) (λ x9 . cfv (cv x1) cbs)) (λ x8 . cfv (cv x1) cbs)) (λ x7 . cixp (λ x8 . cfv (cv x1) cbs) (λ x8 . co (cfv (cv x8) (cv x5)) (cfv (cv x8) (cv x6)) (cfv (cv x2) chom))))))))wceq cfuc (cmpt2 (λ x1 x2 . ccat) (λ x1 x2 . ccat) (λ x1 x2 . ctp (cop (cfv cnx cbs) (co (cv x1) (cv x2) cfunc)) (cop (cfv cnx chom) (co (cv x1) (cv x2) cnat)) (cop (cfv cnx cco) (cmpt2 (λ x3 x4 . cxp (co (cv x1) (cv x2) cfunc) (co (cv x1) (cv x2) cfunc)) (λ x3 x4 . co (cv x1) (cv x2) cfunc) (λ x3 x4 . csb (cfv (cv x3) c1st) (λ x5 . csb (cfv (cv x3) c2nd) (λ x6 . cmpt2 (λ x7 x8 . co (cv x6) (cv x4) (co (cv x1) (cv x2) cnat)) (λ x7 x8 . co (cv x5) (cv x6) (co (cv x1) (cv x2) cnat)) (λ x7 x8 . cmpt (λ x9 . cfv (cv x1) cbs) (λ x9 . co (cfv (cv x9) (cv x7)) (cfv (cv x9) (cv x8)) (co (cop (cfv (cv x9) (cfv (cv x5) c1st)) (cfv (cv x9) (cfv (cv x6) c1st))) (cfv (cv x9) (cfv (cv x4) c1st)) (cfv (cv x2) cco)))))))))))wceq cinito (cmpt (λ x1 . ccat) (λ x1 . crab (λ x2 . wral (λ x3 . weu (λ x4 . wcel (cv x4) (co (cv x2) (cv x3) (cfv (cv x1) chom)))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)))wceq ctermo (cmpt (λ x1 . ccat) (λ x1 . crab (λ x2 . wral (λ x3 . weu (λ x4 . wcel (cv x4) (co (cv x3) (cv x2) (cfv (cv x1) chom)))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)))wceq czeroo (cmpt (λ x1 . ccat) (λ x1 . cin (cfv (cv x1) cinito) (cfv (cv x1) ctermo)))wceq cdoma (ccom c1st c1st)x0)x0
Theorem df_iso : wceq ciso (cmpt (λ x0 . ccat) (λ x0 . ccom (cmpt (λ x1 . cvv) (λ x1 . cdm (cv x1))) (cfv (cv x0) cinv))) (proof)
Theorem df_subc : wceq csubc (cmpt (λ x0 . ccat) (λ x0 . cab (λ x1 . wa (wbr (cv x1) (cfv (cv x0) chomf) cssc) (wsbc (λ x2 . wral (λ x3 . wa (wcel (cfv (cv x3) (cfv (cv x0) ccid)) (co (cv x3) (cv x3) (cv x1))) (wral (λ x4 . wral (λ x5 . wral (λ x6 . wral (λ x7 . wcel (co (cv x7) (cv x6) (co (cop (cv x3) (cv x4)) (cv x5) (cfv (cv x0) cco))) (co (cv x3) (cv x5) (cv x1))) (λ x7 . co (cv x4) (cv x5) (cv x1))) (λ x6 . co (cv x3) (cv x4) (cv x1))) (λ x5 . cv x2)) (λ x4 . cv x2))) (λ x3 . cv x2)) (cdm (cdm (cv x1))))))) (proof)
Theorem df_resf : wceq cresf (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cop (cres (cfv (cv x0) c1st) (cdm (cdm (cv x1)))) (cmpt (λ x2 . cdm (cv x1)) (λ x2 . cres (cfv (cv x2) (cfv (cv x0) c2nd)) (cfv (cv x2) (cv x1)))))) (proof)
Theorem df_fuc : wceq cfuc (cmpt2 (λ x0 x1 . ccat) (λ x0 x1 . ccat) (λ x0 x1 . ctp (cop (cfv cnx cbs) (co (cv x0) (cv x1) cfunc)) (cop (cfv cnx chom) (co (cv x0) (cv x1) cnat)) (cop (cfv cnx cco) (cmpt2 (λ x2 x3 . cxp (co (cv x0) (cv x1) cfunc) (co (cv x0) (cv x1) cfunc)) (λ x2 x3 . co (cv x0) (cv x1) cfunc) (λ x2 x3 . csb (cfv (cv x2) c1st) (λ x4 . csb (cfv (cv x2) c2nd) (λ x5 . cmpt2 (λ x6 x7 . co (cv x5) (cv x3) (co (cv x0) (cv x1) cnat)) (λ x6 x7 . co (cv x4) (cv x5) (co (cv x0) (cv x1) cnat)) (λ x6 x7 . cmpt (λ x8 . cfv (cv x0) cbs) (λ x8 . co (cfv (cv x8) (cv x6)) (cfv (cv x8) (cv x7)) (co (cop (cfv (cv x8) (cfv (cv x4) c1st)) (cfv (cv x8) (cfv (cv x5) c1st))) (cfv (cv x8) (cfv (cv x3) c1st)) (cfv (cv x1) cco))))))))))) (proof)
Theorem df_doma : wceq cdoma (ccom c1st c1st) (proof)