Search for blocks/addresses/...
Proofgold Asset
asset id
a0a54690799799387c7512a6ef5316edcc4d0f5125f162fccfd8ca5a37383623
asset hash
7c96e5a3206d2617393f08405f206ca4b3dc1f6c1e83eba93b42fba66b2934a1
bday / block
23121
tx
f7c28..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
u3
:
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
7fc90..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
∀ x4 .
x4
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Theorem
782e4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
⊆
x0
⟶
∀ x3 x4 x5 x6 .
x2
=
SetAdjoin
(
SetAdjoin
(
UPair
x3
x4
)
x5
)
x6
⟶
(
x4
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x5
x6
⟶
x1
x6
x3
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x3
)
(
DirGraphOutNeighbors
x0
x1
x5
)
⟶
or
(
x7
=
x4
)
(
x7
=
x6
)
)
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x4
)
(
DirGraphOutNeighbors
x0
x1
x6
)
⟶
or
(
x7
=
x3
)
(
x7
=
x5
)
)
⟶
∀ x7 .
x7
∈
x2
⟶
∀ x8 .
x8
∈
x2
⟶
(
x7
=
x8
⟶
∀ x9 : ο .
x9
)
⟶
∀ x9 .
x9
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x8
)
⟶
x9
∈
x2
(proof)
Param
u6
:
ι
Theorem
49b78..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 .
x2
⊆
x0
⟶
∀ x3 x4 x5 x6 .
x2
=
SetAdjoin
(
SetAdjoin
(
UPair
x3
x4
)
x5
)
x6
⟶
(
x4
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x5
x6
⟶
x1
x6
x3
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x3
)
(
DirGraphOutNeighbors
x0
x1
x5
)
⟶
or
(
x7
=
x4
)
(
x7
=
x6
)
)
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x4
)
(
DirGraphOutNeighbors
x0
x1
x6
)
⟶
or
(
x7
=
x3
)
(
x7
=
x5
)
)
⟶
∀ x7 .
x7
∈
x2
⟶
∀ x8 .
x8
∈
x2
⟶
(
x7
=
x8
⟶
∀ x9 : ο .
x9
)
⟶
∀ x9 .
x9
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x8
)
⟶
x9
∈
x2
(proof)