Search for blocks/addresses/...
Proofgold Asset
asset id
7cf412ee74ec99da466c42aca701a926a76d8d5edc88b238ae503110704295e8
asset hash
ed1fbff7866e86a43614aa16f76c082634c6f05bdf8ffb6a044cb061a0468573
bday / block
20800
tx
5295c..
preasset
doc published by
Pr4zB..
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
5fab1..
:=
λ x0 x1 x2 x3 .
or
(
x0
∈
x2
)
(
and
(
x0
=
x2
)
(
x1
∈
x3
)
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
6c980..
:
∀ x0 x1 .
not
(
5fab1..
x0
x1
x0
x1
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
783a2..
:
∀ x0 x1 x2 x3 x4 x5 .
TransSet
x4
⟶
TransSet
x5
⟶
5fab1..
x0
x1
x2
x3
⟶
5fab1..
x2
x3
x4
x5
⟶
5fab1..
x0
x1
x4
x5
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
TwoRamseyGraph_4_6_Church6_squared_a
:=
λ x0 x1 x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 .
x0
(
x1
(
x2
(
x3
x4
x5
x4
x5
x4
x5
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x5
x4
x4
x5
x4
x5
)
(
x3
x5
x5
x4
x4
x5
x5
)
(
x3
x4
x5
x4
x4
x5
x4
)
)
(
x2
(
x3
x5
x4
x5
x4
x5
x4
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x4
x5
x5
x4
x5
x4
)
(
x3
x5
x5
x4
x4
x5
x5
)
(
x3
x5
x4
x4
x4
x5
x4
)
)
(
x2
(
x3
x4
x5
x4
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x4
x5
x5
x4
x5
x4
)
(
x3
x4
x4
x5
x5
x5
x5
)
(
x3
x4
x4
x4
x5
x5
x4
)
)
(
x2
(
x3
x5
x4
x5
x4
x4
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x5
x4
x4
x5
x4
x5
)
(
x3
x4
x4
x5
x5
x5
x5
)
(
x3
x4
x4
x5
x4
x5
x4
)
)
(
x2
(
x3
x4
x5
x5
x4
x4
x5
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x4
x5
x5
x4
x4
x4
)
(
x3
x4
x5
x5
x4
x4
x4
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x5
x5
x5
x5
x4
x4
)
)
(
x2
(
x3
x5
x4
x4
x5
x5
x4
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x5
x4
x4
x5
x4
x4
)
(
x3
x5
x4
x4
x5
x4
x4
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x5
x5
x5
x5
x4
x4
)
)
)
(
x1
(
x2
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x4
x5
x4
x5
x5
x4
)
(
x3
x4
x5
x5
x5
x4
x5
)
(
x3
x5
x4
x4
x4
x4
x5
)
(
x3
x5
x4
x4
x5
x5
x4
)
(
x3
x5
x4
x5
x5
x5
x4
)
)
(
x2
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x4
x5
x4
x4
x5
)
(
x3
x5
x4
x5
x5
x5
x4
)
(
x3
x4
x5
x4
x4
x5
x4
)
(
x3
x4
x5
x5
x4
x4
x5
)
(
x3
x4
x5
x5
x5
x5
x4
)
)
(
x2
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x4
x5
x4
x5
x5
x4
)
(
x3
x5
x5
x4
x5
x4
x5
)
(
x3
x4
x4
x5
x4
x5
x4
)
(
x3
x4
x5
x5
x4
x5
x4
)
(
x3
x5
x5
x5
x4
x5
x4
)
)
(
x2
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x4
x5
x4
x4
x5
)
(
x3
x5
x5
x5
x4
x5
x4
)
(
x3
x4
x4
x4
x5
x4
x5
)
(
x3
x5
x4
x4
x5
x4
x5
)
(
x3
x5
x5
x4
x5
x5
x4
)
)
(
x2
(
x3
x4
x5
x4
x5
x5
x5
)
(
x3
x5
x4
x5
x4
x4
x4
)
(
x3
x5
x4
x5
x4
x5
x5
)
(
x3
x5
x5
x5
x5
x4
x4
)
(
x3
x5
x5
x5
x5
x5
x4
)
(
x3
x5
x4
x5
x4
x4
x4
)
)
(
x2
(
x3
x5
x4
x5
x4
x5
x5
)
(
x3
x4
x5
x4
x5
x4
x4
)
(
x3
x4
x5
x4
x5
x5
x5
)
(
x3
x5
x5
x5
x5
x4
x4
)
(
x3
x5
x5
x5
x5
x4
x5
)
(
x3
x4
x5
x4
x5
x4
x4
)
)
)
(
x1
(
x2
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x4
x5
x5
x5
x5
x4
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x4
x4
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x5
x5
)
(
x3
x5
x5
x4
x5
x4
x4
)
)
(
x2
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x4
x5
x5
x4
x5
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x4
x5
x5
x4
x4
x5
)
(
x3
x5
x5
x4
x4
x5
x5
)
(
x3
x5
x5
x5
x4
x4
x4
)
)
(
x2
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x5
x5
x4
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x4
x5
x5
x4
x4
x5
)
(
x3
x4
x4
x5
x5
x5
x5
)
(
x3
x4
x5
x5
x5
x4
x4
)
)
(
x2
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x5
x5
x4
x4
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x4
x4
x5
x5
x4
)
(
x3
x4
x4
x5
x5
x5
x5
)
(
x3
x5
x4
x5
x5
x4
x4
)
)
(
x2
(
x3
x4
x5
x4
x5
x4
x4
)
(
x3
x4
x5
x4
x5
x5
x5
)
(
x3
x4
x5
x4
x5
x4
x4
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x5
x4
x5
x4
x5
x5
)
(
x3
x5
x5
x5
x5
x5
x4
)
)
(
x2
(
x3
x5
x4
x5
x4
x4
x4
)
(
x3
x5
x4
x5
x4
x5
x5
)
(
x3
x5
x4
x5
x4
x4
x4
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x4
x5
x4
x5
x5
x5
)
(
x3
x5
x5
x5
x5
x5
x4
)
)
)
(
x1
(
x2
(
x3
x5
x4
x4
x5
x4
x5
)
(
x3
x5
x4
x4
x4
x5
x5
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x5
x4
x5
x5
x4
)
(
x3
x4
x4
x5
x5
x4
x4
)
)
(
x2
(
x3
x4
x5
x5
x4
x5
x4
)
(
x3
x4
x5
x4
x4
x5
x5
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x5
x5
x5
x4
x4
x5
)
(
x3
x4
x4
x5
x5
x4
x4
)
)
(
x2
(
x3
x4
x5
x5
x4
x5
x4
)
(
x3
x4
x4
x5
x4
x5
x5
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x4
x5
x5
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x4
x4
)
)
(
x2
(
x3
x5
x4
x4
x5
x4
x5
)
(
x3
x4
x4
x4
x5
x5
x5
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x5
x4
x5
x5
x4
x5
)
(
x3
x5
x5
x4
x4
x4
x4
)
)
(
x2
(
x3
x4
x5
x5
x4
x4
x4
)
(
x3
x4
x5
x5
x4
x4
x4
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x4
x5
x5
x4
x4
x5
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x5
x4
x4
x5
x5
x4
)
)
(
x2
(
x3
x5
x4
x4
x5
x4
x4
)
(
x3
x5
x4
x4
x5
x4
x4
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x5
x4
x4
x5
x5
x4
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x4
x5
x5
x4
x5
x4
)
)
)
(
x1
(
x2
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x5
x4
x5
x5
x5
)
(
x3
x4
x5
x4
x4
x5
x4
)
(
x3
x4
x4
x5
x5
x5
x4
)
)
(
x2
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x5
x5
x5
x4
x5
x5
)
(
x3
x5
x4
x4
x4
x4
x5
)
(
x3
x4
x4
x5
x5
x5
x4
)
)
(
x2
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x4
x5
x5
x4
x5
x5
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x4
x5
x5
x5
x5
x5
)
(
x3
x4
x4
x4
x5
x5
x4
)
(
x3
x5
x5
x4
x4
x5
x4
)
)
(
x2
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x5
x4
x4
x5
x5
x5
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x5
x4
x5
x5
x5
x5
)
(
x3
x4
x4
x5
x4
x4
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
)
(
x2
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x5
x4
x5
x4
x5
x4
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x5
x4
x5
x4
x5
x5
)
(
x3
x5
x4
x5
x4
x4
x5
)
(
x3
x4
x4
x4
x4
x4
x4
)
)
(
x2
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x4
x5
x4
x5
x4
x5
)
(
x3
x5
x5
x5
x5
x5
x5
)
(
x3
x4
x5
x4
x5
x5
x5
)
(
x3
x4
x5
x4
x5
x5
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
)
)
(
x1
(
x2
(
x3
x4
x5
x4
x4
x5
x5
)
(
x3
x5
x4
x5
x5
x5
x4
)
(
x3
x5
x5
x4
x5
x5
x5
)
(
x3
x4
x4
x5
x5
x5
x4
)
(
x3
x4
x4
x5
x5
x4
x4
)
(
x3
x4
x5
x5
x4
x5
x4
)
)
(
x2
(
x3
x5
x4
x4
x4
x5
x5
)
(
x3
x4
x5
x5
x5
x4
x5
)
(
x3
x5
x5
x5
x4
x5
x5
)
(
x3
x4
x4
x5
x5
x4
x5
)
(
x3
x4
x4
x5
x5
x4
x4
)
(
x3
x5
x4
x4
x5
x5
x4
)
)
(
x2
(
x3
x4
x4
x4
x5
x5
x5
)
(
x3
x5
x5
x5
x4
x5
x4
)
(
x3
x4
x5
x5
x5
x5
x5
)
(
x3
x5
x5
x4
x4
x4
x5
)
(
x3
x5
x5
x4
x4
x4
x4
)
(
x3
x5
x4
x4
x5
x5
x4
)
)
(
x2
(
x3
x4
x4
x5
x4
x5
x5
)
(
x3
x5
x5
x4
x5
x4
x5
)
(
x3
x5
x4
x5
x5
x5
x5
)
(
x3
x5
x5
x4
x4
x5
x4
)
(
x3
x5
x5
x4
x4
x4
x4
)
(
x3
x4
x5
x5
x4
x5
x4
)
)
(
x2
(
x3
x5
x5
x5
x5
x4
x4
)
(
x3
x5
x5
x5
x5
x4
x4
)
(
x3
x4
x4
x4
x4
x5
x5
)
(
x3
x4
x4
x4
x4
x5
x5
)
(
x3
x5
x5
x5
x5
x4
x4
)
(
x3
x5
x5
x5
x5
x4
x4
)
)
(
x2
(
x3
x4
x4
x4
x4
x4
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
(
x3
x4
x4
x4
x4
x4
x4
)
)
)
Param
nth_6_tuple
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
TwoRamseyGraph_4_6_35_a
:=
λ x0 x1 x2 x3 .
TwoRamseyGraph_4_6_Church6_squared_a
(
nth_6_tuple
x0
)
(
nth_6_tuple
x1
)
(
nth_6_tuple
x2
)
(
nth_6_tuple
x3
)
=
λ x5 x6 .
x5
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
dd650..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
TwoRamseyGraph_4_6_35_a
x0
x1
x0
x1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_6
nat_6
:
nat_p
6
Theorem
6e6b6..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
not
(
TwoRamseyGraph_4_6_35_a
x0
x1
x2
x3
)
⟶
or
(
5fab1..
x0
x1
x2
x3
)
(
5fab1..
x2
x3
x0
x1
)
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
952a3..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
0
x0
u1
x1
(proof)
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
0bf10..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
0
x0
u2
x1
(proof)
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
be78a..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u1
x0
u2
x1
(proof)
Known
In_0_3
In_0_3
:
0
∈
3
Theorem
695f7..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
0
x0
u3
x1
(proof)
Known
In_1_3
In_1_3
:
1
∈
3
Theorem
21a98..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u1
x0
u3
x1
(proof)
Known
In_2_3
In_2_3
:
2
∈
3
Theorem
938fd..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u2
x0
u3
x1
(proof)
Known
In_0_4
In_0_4
:
0
∈
4
Theorem
cc19c..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
0
x0
u4
x1
(proof)
Known
In_1_4
In_1_4
:
1
∈
4
Theorem
9e4a0..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u1
x0
u4
x1
(proof)
Known
In_2_4
In_2_4
:
2
∈
4
Theorem
663cd..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u2
x0
u4
x1
(proof)
Known
In_3_4
In_3_4
:
3
∈
4
Theorem
1bd57..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u3
x0
u4
x1
(proof)
Known
In_0_5
In_0_5
:
0
∈
5
Theorem
15d0d..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
0
x0
u5
x1
(proof)
Known
In_1_5
In_1_5
:
1
∈
5
Theorem
e87d5..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u1
x0
u5
x1
(proof)
Known
In_2_5
In_2_5
:
2
∈
5
Theorem
8a4c6..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u2
x0
u5
x1
(proof)
Known
In_3_5
In_3_5
:
3
∈
5
Theorem
b05ce..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u3
x0
u5
x1
(proof)
Known
In_4_5
In_4_5
:
4
∈
5
Theorem
8c8c2..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
5fab1..
u4
x0
u5
x1
(proof)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Theorem
c3b75..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u1
x0
0
x1
)
(proof)
Theorem
cb619..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u2
x0
0
x1
)
(proof)
Theorem
4a2be..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u3
x0
0
x1
)
(proof)
Theorem
bfb87..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u4
x0
0
x1
)
(proof)
Theorem
3a4b3..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u5
x0
0
x1
)
(proof)
Theorem
97337..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u2
x0
u1
x1
)
(proof)
Theorem
5b609..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u3
x0
u1
x1
)
(proof)
Theorem
a4c20..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u4
x0
u1
x1
)
(proof)
Theorem
05944..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u5
x0
u1
x1
)
(proof)
Theorem
a5181..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u3
x0
u2
x1
)
(proof)
Theorem
2f248..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u4
x0
u2
x1
)
(proof)
Theorem
fcb65..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u5
x0
u2
x1
)
(proof)
Theorem
adc16..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u4
x0
u3
x1
)
(proof)
Theorem
8a34d..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u5
x0
u3
x1
)
(proof)
Theorem
d5869..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
5fab1..
u5
x0
u4
x1
)
(proof)
Theorem
c2374..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
0
x0
u1
(proof)
Theorem
75bff..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
0
x0
u2
(proof)
Theorem
875a5..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u1
x0
u2
(proof)
Theorem
2bf26..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
0
x0
u3
(proof)
Theorem
1cab7..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u1
x0
u3
(proof)
Theorem
86ea6..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u2
x0
u3
(proof)
Theorem
86f2e..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
0
x0
u4
(proof)
Theorem
c8ace..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u1
x0
u4
(proof)
Theorem
12360..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u2
x0
u4
(proof)
Theorem
a409f..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u3
x0
u4
(proof)
Theorem
67cca..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
0
x0
u5
(proof)
Theorem
153b7..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u1
x0
u5
(proof)
Theorem
95c3f..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u2
x0
u5
(proof)
Theorem
3aa97..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u3
x0
u5
(proof)
Theorem
0c8db..
:
∀ x0 .
x0
∈
u6
⟶
5fab1..
x0
u4
x0
u5
(proof)
Theorem
a7820..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
0
x0
0
)
(proof)
Theorem
c2f7f..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u1
x0
0
)
(proof)
Theorem
4902e..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u2
x0
0
)
(proof)
Theorem
0c398..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u3
x0
0
)
(proof)
Theorem
6ad4c..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u4
x0
0
)
(proof)
Theorem
f33f9..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
0
)
(proof)
Theorem
659dc..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u1
x0
u1
)
(proof)
Theorem
65f34..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u2
x0
u1
)
(proof)
Theorem
5dff1..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u3
x0
u1
)
(proof)
Theorem
ad774..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u4
x0
u1
)
(proof)
Theorem
5776b..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
u1
)
(proof)
Theorem
3fb7d..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u2
x0
u2
)
(proof)
Theorem
d5175..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u3
x0
u2
)
(proof)
Theorem
9225d..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u4
x0
u2
)
(proof)
Theorem
5a216..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
u2
)
(proof)
Theorem
99a85..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u3
x0
u3
)
(proof)
Theorem
cde57..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u4
x0
u3
)
(proof)
Theorem
f8c71..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
u3
)
(proof)
Theorem
e8b66..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u4
x0
u4
)
(proof)
Theorem
da55d..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
u4
)
(proof)
Theorem
ab59c..
:
∀ x0 .
x0
∈
u6
⟶
not
(
5fab1..
x0
u5
x0
u5
)
(proof)
Known
33924..
:
nth_6_tuple
u4
=
λ x1 x2 x3 x4 x5 x6 .
x5
Known
fed6d..
:
nth_6_tuple
u5
=
λ x1 x2 x3 x4 x5 x6 .
x6
Known
cases_6
cases_6
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
x0
Known
a1243..
:
nth_6_tuple
0
=
λ x1 x2 x3 x4 x5 x6 .
x1
Known
a7cad..
:
nth_6_tuple
u1
=
λ x1 x2 x3 x4 x5 x6 .
x2
Known
a0d60..
:
nth_6_tuple
u2
=
λ x1 x2 x3 x4 x5 x6 .
x3
Known
89684..
:
nth_6_tuple
u3
=
λ x1 x2 x3 x4 x5 x6 .
x4
Theorem
2e599..
:
∀ x0 .
x0
∈
u6
⟶
TwoRamseyGraph_4_6_35_a
u4
u4
u5
x0
(proof)
Theorem
ff9a1..
:
∀ x0 .
x0
∈
u6
⟶
TwoRamseyGraph_4_6_35_a
u4
u5
u5
x0
(proof)