Search for blocks/addresses/...
Proofgold Asset
asset id
80369b57e247cb8e029c9a8064d213cabf46995e80a642259aa141a38c6f2b93
asset hash
b0026c3e3c09b7ad4cccfe9d763f18cf69ee34b8aa25f4be714cf26a6d7a2d59
bday / block
18506
tx
f0ded..
preasset
doc published by
Pr4zB..
Param
ChurchNum_3ary_proj_p
:
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
ο
Param
ChurchNum_8ary_proj_p
:
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
ο
Definition
TwoRamseyGraph_4_5_24_ChurchNums_3x8
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x4 .
x0
(
x1
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
)
(
x1
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
)
)
(
x1
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
(
x2
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
(
x3
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
λ x6 .
x6
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
(
λ x5 :
ι → ι
.
x5
)
)
)
)
(
λ x5 .
x4
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
ChurchNums_3x8_eq
:
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
ο
Definition
ChurchNums_3x8_neq
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
not
(
ChurchNums_3x8_eq
x0
x1
x2
x3
)
Known
fc1b4..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_8ary_proj_p
x1
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
λ x3 x4 x5 :
(
ι → ι
)
→
ι → ι
.
x3
)
(
λ x3 x4 x5 x6 x7 x8 x9 x10 :
(
ι → ι
)
→
ι → ι
.
x3
)
x0
x1
=
λ x3 x4 .
x3
)
⟶
∀ x2 : ο .
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x8
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x11
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x8
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x10
)
⟶
x2
)
⟶
(
(
x0
=
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
(
x1
=
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x11
)
⟶
x2
)
⟶
x2
Known
f6916..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
x0
=
x1
⟶
x2
=
x3
⟶
ChurchNums_3x8_eq
x0
x2
x1
x3
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
Theorem
fa458..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
λ x5 x6 x7 :
(
ι → ι
)
→
ι → ι
.
x5
)
(
λ x5 x6 x7 x8 x9 x10 x11 x12 :
(
ι → ι
)
→
ι → ι
.
x5
)
x0
x2
=
λ x5 x6 .
x5
)
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
λ x5 x6 x7 :
(
ι → ι
)
→
ι → ι
.
x5
)
(
λ x5 x6 x7 x8 x9 x10 x11 x12 :
(
ι → ι
)
→
ι → ι
.
x5
)
x1
x3
=
λ x5 x6 .
x5
)
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
λ x5 x6 x7 :
(
ι → ι
)
→
ι → ι
.
x5
)
(
λ x5 x6 x7 x8 x9 x10 x11 x12 :
(
ι → ι
)
→
ι → ι
.
x6
)
x0
x2
=
λ x5 x6 .
x5
)
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
λ x5 x6 x7 :
(
ι → ι
)
→
ι → ι
.
x5
)
(
λ x5 x6 x7 x8 x9 x10 x11 x12 :
(
ι → ι
)
→
ι → ι
.
x6
)
x1
x3
=
λ x5 x6 .
x5
)
⟶
(
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
λ x5 x6 .
x5
)
⟶
ChurchNums_3x8_neq
(
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
(
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x4
)
x0
x2
⟶
ChurchNums_3x8_neq
(
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
(
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x5
)
x0
x2
⟶
ChurchNums_3x8_neq
(
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
(
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x4
)
x1
x3
⟶
ChurchNums_3x8_neq
(
λ x4 x5 x6 :
(
ι → ι
)
→
ι → ι
.
x4
)
(
λ x4 x5 x6 x7 x8 x9 x10 x11 :
(
ι → ι
)
→
ι → ι
.
x5
)
x1
x3
⟶
ChurchNums_3x8_neq
x0
x2
x1
x3
⟶
False
(proof)