Search for blocks/addresses/...
Proofgold Asset
asset id
8433c8d8b7ff4f65291c4f478f9f70b24c47f163a859af9b540572dd1955f202
asset hash
86a78a1ba81ad866916ebef61b23db2e66f8e12434f82b34aabe0fcd41419d34
bday / block
15418
tx
6df91..
preasset
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
9da24..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 x3 .
atleastp
(
add_nat
x0
x1
)
(
binunion
x2
x3
)
⟶
or
(
atleastp
x0
x2
)
(
atleastp
x1
x3
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Param
Sing
Sing
:
ι
→
ι
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
1dc5a..
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
atleastp
x0
x1
⟶
atleastp
(
ordsucc
x0
)
(
binunion
x1
(
Sing
x2
)
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Theorem
610be..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
b8b19..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x2
Theorem
97c7e..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
(proof)
Known
2cf95..
:
add_nat
6
4
=
10
Known
nat_6
nat_6
:
nat_p
6
Known
nat_4
nat_4
:
nat_p
4
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
TwoRamseyProp_3_3_6
TwoRamseyProp_3_3_6
:
TwoRamseyProp
3
3
6
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
95eb4..
:
∀ x0 .
TwoRamseyProp_atleastp
2
x0
x0
Theorem
TwoRamseyProp_3_4_11
:
TwoRamseyProp
3
4
11
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
nat_16
nat_16
:
nat_p
16
Known
2039c..
:
11
∈
16
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
db1de..
:
exp_nat
2
4
=
16
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Theorem
TwoRamseyProp_3_4_Power_4
TwoRamseyProp_3_4_Power_4
:
TwoRamseyProp
3
4
(
prim4
4
)
(proof)
Known
697c6..
:
∀ x0 x1 x2 x3 .
x2
⊆
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
78a3e..
:
∀ x0 .
prim4
x0
⊆
prim4
(
ordsucc
x0
)
Theorem
TwoRamseyProp_3_4_Power_5
TwoRamseyProp_3_4_Power_5
:
TwoRamseyProp
3
4
(
prim4
5
)
(proof)
Theorem
TwoRamseyProp_3_4_Power_6
TwoRamseyProp_3_4_Power_6
:
TwoRamseyProp
3
4
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_3_4_Power_7
TwoRamseyProp_3_4_Power_7
:
TwoRamseyProp
3
4
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_4_Power_8
TwoRamseyProp_3_4_Power_8
:
TwoRamseyProp
3
4
(
prim4
8
)
(proof)
Known
525d1..
:
add_nat
11
5
=
16
Known
nat_11
nat_11
:
nat_p
11
Known
nat_5
nat_5
:
nat_p
5
Theorem
TwoRamseyProp_3_5_17
:
TwoRamseyProp
3
5
17
(proof)
Known
1f846..
:
nat_p
32
Known
8ad73..
:
17
∈
32
Known
e089c..
:
exp_nat
2
5
=
32
Theorem
TwoRamseyProp_3_5_Power_5
TwoRamseyProp_3_5_Power_5
:
TwoRamseyProp
3
5
(
prim4
5
)
(proof)
Theorem
TwoRamseyProp_3_5_Power_6
TwoRamseyProp_3_5_Power_6
:
TwoRamseyProp
3
5
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_3_5_Power_7
TwoRamseyProp_3_5_Power_7
:
TwoRamseyProp
3
5
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_5_Power_8
TwoRamseyProp_3_5_Power_8
:
TwoRamseyProp
3
5
(
prim4
8
)
(proof)
Known
d5f37..
:
add_nat
11
11
=
22
Known
42643..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp_atleastp
x1
x0
x2
Theorem
TwoRamseyProp_4_4_23
:
TwoRamseyProp
4
4
23
(proof)
Known
e4564..
:
23
∈
32
Theorem
TwoRamseyProp_4_4_Power_5
TwoRamseyProp_4_4_Power_5
:
TwoRamseyProp
4
4
(
prim4
5
)
(proof)
Theorem
TwoRamseyProp_4_4_Power_6
TwoRamseyProp_4_4_Power_6
:
TwoRamseyProp
4
4
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_4_4_Power_7
TwoRamseyProp_4_4_Power_7
:
TwoRamseyProp
4
4
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_4_4_Power_8
TwoRamseyProp_4_4_Power_8
:
TwoRamseyProp
4
4
(
prim4
8
)
(proof)
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
f6732..
:
add_nat
17
1
=
18
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
87c30..
:
add_nat
17
2
=
19
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
cd6de..
:
add_nat
17
3
=
20
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
7246a..
:
add_nat
17
4
=
21
(proof)
Theorem
6670f..
:
add_nat
17
5
=
22
(proof)
Theorem
eec07..
:
add_nat
17
6
=
23
(proof)
Known
nat_17
nat_17
:
nat_p
17
Theorem
TwoRamseyProp_3_6_24
:
TwoRamseyProp
3
6
24
(proof)
Known
be3fd..
:
24
∈
32
Theorem
TwoRamseyProp_3_6_Power_5
TwoRamseyProp_3_6_Power_5
:
TwoRamseyProp
3
6
(
prim4
5
)
(proof)
Theorem
TwoRamseyProp_3_6_Power_6
TwoRamseyProp_3_6_Power_6
:
TwoRamseyProp
3
6
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_3_6_Power_7
TwoRamseyProp_3_6_Power_7
:
TwoRamseyProp
3
6
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_6_Power_8
TwoRamseyProp_3_6_Power_8
:
TwoRamseyProp
3
6
(
prim4
8
)
(proof)