Search for blocks/addresses/...
Proofgold Asset
asset id
c30f3eddc6042d064fe0b99368269faab3e5a2452c616d80871dad27c07c26dd
asset hash
875cb67486b93a49f4eeba44a89d9789da8ff25d0b3e59392febfca3be46257a
bday / block
4786
tx
f96db..
preasset
doc published by
PrGxv..
Param
and
:
ο
→
ο
→
ο
Definition
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
48ef8..
:
ι
Param
c2e41..
:
ι
→
ι
→
ο
Definition
6eae3..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
prim1
x2
48ef8..
)
(
c2e41..
x0
x2
)
⟶
x1
)
⟶
x1
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
c036a..
:=
λ x0 .
not
(
6eae3..
x0
)
Param
14149..
:
ι
→
ι
→
ι
Definition
0a59d..
:=
λ x0 x1 .
and
(
and
(
prim1
x0
48ef8..
)
(
prim1
x1
48ef8..
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
48ef8..
)
(
14149..
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
or
:
ο
→
ο
→
ο
Definition
94fdb..
:=
λ x0 .
and
(
and
(
prim1
x0
48ef8..
)
(
prim1
(
4ae4a..
4a7ef..
)
x0
)
)
(
∀ x1 .
prim1
x1
48ef8..
⟶
0a59d..
x1
x0
⟶
or
(
x1
=
4ae4a..
4a7ef..
)
(
x1
=
x0
)
)
Param
1ad11..
:
ι
→
ι
→
ι
Definition
2a940..
:=
λ x0 x1 .
and
(
and
(
prim1
x0
48ef8..
)
(
prim1
x1
48ef8..
)
)
(
∀ x2 .
prim1
x2
(
1ad11..
48ef8..
(
4ae4a..
4a7ef..
)
)
⟶
0a59d..
x2
x0
⟶
0a59d..
x2
x1
⟶
x2
=
4ae4a..
4a7ef..
)
Param
616bf..
:
ι
→
ι
→
ι
Definition
fc3b3..
:=
λ x0 x1 x2 .
and
(
and
(
and
(
prim1
x0
48ef8..
)
(
prim1
x1
48ef8..
)
)
(
prim1
x2
48ef8..
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
48ef8..
)
(
616bf..
x0
(
14149..
x4
x2
)
=
x1
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
48ef8..
)
(
616bf..
x1
(
14149..
x4
x2
)
=
x0
)
⟶
x3
)
⟶
x3
)
)
Param
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
f6049..
:=
λ x0 .
nat_primrec
(
4ae4a..
4a7ef..
)
(
λ x1 .
14149..
x0
)
Definition
8d0f2..
:=
λ x0 .
and
(
prim1
x0
48ef8..
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
prim1
x2
48ef8..
)
(
x0
=
14149..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
)
⟶
x1
)
⟶
x1
)
Definition
b2df9..
:=
λ x0 .
and
(
prim1
x0
48ef8..
)
(
∀ x1 .
prim1
x1
48ef8..
⟶
x0
=
14149..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
x1
⟶
∀ x2 : ο .
x2
)
Definition
2f282..
:=
nat_primrec
(
4ae4a..
4a7ef..
)
(
λ x0 .
14149..
(
4ae4a..
x0
)
)
Param
f482f..
:
ι
→
ι
→
ι
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Definition
455bd..
:=
λ x0 .
f482f..
(
nat_primrec
(
0fc90..
48ef8..
(
λ x1 .
If_i
(
x1
=
4a7ef..
)
(
4ae4a..
4a7ef..
)
4a7ef..
)
)
(
λ x1 x2 .
0fc90..
48ef8..
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
(
4ae4a..
4a7ef..
)
(
616bf..
(
f482f..
x2
(
prim3
x3
)
)
(
f482f..
x2
x3
)
)
)
)
x0
)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
d091d..
:=
λ x0 .
prim0
(
λ x1 .
and
(
prim1
x1
48ef8..
)
(
c2e41..
x1
(
1216a..
(
4ae4a..
x0
)
(
λ x2 .
and
(
prim1
4a7ef..
x2
)
(
2a940..
x2
x0
)
)
)
)
)
Param
569d0..
:
ι
→
ι
→
ι
Param
e6316..
:
ι
→
ι
→
ι
Param
bc82c..
:
ι
→
ι
→
ι
Param
f4dc0..
:
ι
→
ι
Definition
5c14e..
:=
λ x0 x1 .
569d0..
(
2f282..
x0
)
(
e6316..
(
2f282..
(
bc82c..
x0
(
f4dc0..
x1
)
)
)
(
2f282..
x1
)
)
Param
a470d..
:
ι
Definition
36be8..
:=
λ x0 x1 .
and
(
and
(
prim1
x0
a470d..
)
(
prim1
x1
a470d..
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
a470d..
)
(
e6316..
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
ff71c..
:=
λ x0 x1 x2 .
and
(
and
(
and
(
prim1
x0
a470d..
)
(
prim1
x1
a470d..
)
)
(
prim1
x2
(
1ad11..
48ef8..
(
4ae4a..
4a7ef..
)
)
)
)
(
36be8..
(
bc82c..
x0
(
f4dc0..
x1
)
)
x2
)
Definition
51e8c..
:=
λ x0 x1 .
and
(
and
(
prim1
x0
a470d..
)
(
prim1
x1
a470d..
)
)
(
∀ x2 .
prim1
x2
(
1ad11..
48ef8..
(
4ae4a..
4a7ef..
)
)
⟶
36be8..
x2
x0
⟶
36be8..
x2
x1
⟶
x2
=
4ae4a..
4a7ef..
)
Definition
62b6b..
:=
λ x0 .
nat_primrec
(
4ae4a..
4a7ef..
)
(
λ x1 .
e6316..
x0
)
Param
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Param
explicit_Nats_primrec
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
explicit_Nats_one_plus
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Param
explicit_Nats_one_plus
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Definition
explicit_Nats_one_mult_alt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
explicit_Nats_primrec
x0
x1
x2
x3
(
λ x4 .
explicit_Nats_one_plus
x0
x1
x2
x3
)
Definition
explicit_Nats_lt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
x0
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x6
x3
=
x4
)
⟶
x5
)
⟶
x5
)
Definition
3db9b..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
prim1
x3
x0
)
(
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_lt
x0
x1
x2
x4
x3
⟶
or
(
x4
=
x1
)
(
x4
=
x3
)
)
Definition
340be..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
explicit_Nats_lt
x0
x1
x2
x5
x3
⟶
explicit_Nats_lt
x0
x1
x2
x5
x4
⟶
x5
=
4ae4a..
4a7ef..
)
Definition
12b21..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 x5 .
and
(
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
x0
)
)
(
prim1
x5
x0
)
)
(
or
(
or
(
x3
=
x4
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
(
explicit_Nats_one_plus
x0
x1
x2
x7
x5
)
=
x4
)
⟶
x6
)
⟶
x6
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x4
(
explicit_Nats_one_plus
x0
x1
x2
x7
x5
)
=
x3
)
⟶
x6
)
⟶
x6
)
)
Definition
explicit_Nats_one_lt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
x0
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
Definition
explicit_Nats_one_le
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
x0
)
)
(
or
(
x3
=
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
)
Definition
09583..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
prim1
x3
x0
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x3
=
explicit_Nats_one_plus
x0
x1
x2
(
x2
x1
)
x5
)
⟶
x4
)
⟶
x4
)
Definition
bf748..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
prim1
x3
x0
)
(
∀ x4 .
prim1
x4
x0
⟶
x3
=
explicit_Nats_one_plus
x0
x1
x2
(
x2
x1
)
x4
⟶
∀ x5 : ο .
x5
)
Definition
900a2..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
explicit_Nats_primrec
x0
x1
x2
x1
(
λ x3 x4 .
If_i
(
and
(
x3
=
x1
⟶
∀ x5 : ο .
x5
)
(
340be..
x0
x1
x2
x3
x3
)
)
(
x2
x4
)
x4
)