Search for blocks/addresses/...
Proofgold Asset
asset id
88e61ffaf1dbaee17f9be17f62120b06aa0e8b9b9afac3a05b296c9dcb3e425a
asset hash
7446cdc1b5e5285f111eaf2b8f03f0c0516bd09c2c84c65ef4fe7bbc1ce3ec74
bday / block
48176
tx
0293e..
preasset
doc published by
PrGM6..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Theorem
6cd03..
:
∀ x0 x1 .
x1
∈
x0
⟶
Sing
x1
⊆
x0
...
Param
UPair
UPair
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Theorem
f7dd2..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
UPair
x1
x2
⊆
x0
...
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Theorem
6219b..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
SetAdjoin
(
UPair
x1
x2
)
x3
⊆
x0
...
Theorem
c88f0..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
⊆
x0
...
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
65822..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
x3
∈
binunion
x1
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
binunion
x1
(
Sing
x2
)
⟶
x0
x3
x4
⟶
x0
x4
x3
)
⟶
∀ x3 .
x3
∈
binunion
x1
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
binunion
x1
(
Sing
x2
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
...
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Theorem
c7e9c..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x2
x3
⟶
(
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x1
x2
)
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
UPair
x1
x2
)
x3
⟶
x0
x4
x5
⟶
x0
x5
x4
)
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x1
x2
)
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
UPair
x1
x2
)
x3
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x4
x5
...
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Theorem
58c12..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 x4 .
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
x0
x2
x3
⟶
x0
x2
x4
⟶
x0
x3
x4
⟶
(
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
⟶
∀ x6 .
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
⟶
x0
x5
x6
⟶
x0
x6
x5
)
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
⟶
∀ x6 .
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
x0
x5
x6
...
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
9c595..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
(
x0
x6
x10
⟶
x0
x1
x10
⟶
x0
x6
x9
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x1
x11
⟶
x0
x1
x10
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x2
x11
⟶
x0
x2
x10
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x11
⟶
x0
x4
x10
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x1
x12
⟶
x0
x1
x10
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x6
x13
⟶
x0
x1
x13
⟶
x0
x6
x9
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x2
x13
⟶
x0
x2
x11
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x13
⟶
x0
x4
x11
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x3
x14
⟶
x0
x4
x12
⟶
x0
x3
x12
⟶
False
)
⟶
(
x0
x2
x14
⟶
x0
x2
x12
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x4
x12
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x3
x14
⟶
x0
x4
x13
⟶
x0
x3
x13
⟶
False
)
⟶
(
x0
x1
x14
⟶
x0
x1
x13
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x6
x15
⟶
x0
x1
x15
⟶
x0
x6
x10
⟶
x0
x1
x10
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x3
x15
⟶
x0
x4
x11
⟶
x0
x3
x11
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x11
⟶
x0
x2
x11
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x11
⟶
x0
x2
x10
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x11
⟶
x0
x3
x10
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x11
⟶
x0
x4
x10
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x12
⟶
x0
x2
x12
⟶
False
)
⟶
(
x0
x6
x15
⟶
x0
x1
x15
⟶
x0
x6
x13
⟶
x0
x1
x13
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x13
⟶
x0
x2
x11
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x13
⟶
x0
x3
x11
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x13
⟶
x0
x4
x11
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x14
⟶
x0
x2
x14
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x14
⟶
x0
x2
x12
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x14
⟶
x0
x3
x12
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x14
⟶
x0
x4
x12
⟶
False
)
⟶
(
not
(
x0
x3
x9
)
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x1
x9
)
⟶
False
)
⟶
(
not
(
x0
x3
x12
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x4
x12
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x5
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
not
(
x0
x4
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
not
(
x0
x3
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x4
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x6
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x3
x14
)
⟶
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
False
)
⟶
(
not
(
x0
x4
x14
)
⟶
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
False
)
⟶
(
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x5
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x15
)
⟶
not
(
x0
x2
x15
)
⟶
not
(
x0
x1
x15
)
⟶
False
)
⟶
(
not
(
x0
x5
x15
)
⟶
not
(
x0
x3
x15
)
⟶
not
(
x0
x1
x15
)
⟶
False
)
⟶
(
not
(
x0
x3
x15
)
⟶
not
(
x0
x2
x15
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
(
not
(
x0
x6
x15
)
⟶
not
(
x0
x4
x15
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x4
x9
)
⟶
False
)
⟶
(
x0
x1
x11
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x1
x12
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x1
x13
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x2
x9
⟶
not
(
x0
x1
x9
)
⟶
False
)
⟶
(
x0
x3
x9
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
(
not
(
x0
x1
x11
)
⟶
not
(
x0
x1
x12
)
⟶
x0
x1
x14
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
x0
x1
x9
⟶
x0
x1
x15
⟶
x0
x3
x15
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
False
Definition
2f869..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
x0
x3
x4
⟶
x5
)
⟶
x5
Definition
87c36..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
2f869..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
not
(
x0
x3
x5
)
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
f201d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
not
(
x0
x2
x6
)
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
2452c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f201d..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
e643b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2452c..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
x0
x2
x8
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
6648a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
c9184..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
cdfa5..
:=
λ x0 x1 .
λ x2 :
ι →
ι → ο
.
∀ x3 .
x3
⊆
x1
⟶
atleastp
x0
x3
⟶
not
(
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x2
x4
x5
)
Param
u4
:
ι
Definition
86706..
:=
cdfa5..
u4
Definition
35fb6..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
86706..
x0
(
λ x2 x3 .
not
(
x1
x2
x3
)
)
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
7204a..
:
∀ x0 x1 x2 x3 .
(
x0
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
equip
u4
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
38317..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
(
∀ x17 .
x17
∈
x1
⟶
∀ x18 .
x18
∈
x1
⟶
x0
x17
x18
⟶
x0
x18
x17
)
⟶
(
x2
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x10
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x11
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x12
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x13
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x14
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x15
⟶
∀ x17 : ο .
x17
)
⟶
(
x2
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x3
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x4
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x5
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x6
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x7
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x8
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
(
x9
=
x16
⟶
∀ x17 : ο .
x17
)
⟶
e643b..
x0
x2
x3
x4
x5
x6
x7
x8
x9
⟶
c9184..
(
λ x17 x18 .
not
(
x0
x17
x18
)
)
x10
x11
x12
x13
x14
x15
x16
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
(
x0
x2
x12
⟶
not
(
x0
x2
x11
)
⟶
False
)
⟶
(
x0
x2
x13
⟶
not
(
x0
x2
x11
)
⟶
False
)
⟶
(
x0
x2
x14
⟶
not
(
x0
x2
x11
)
⟶
False
)
⟶
(
x0
x3
x10
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
x0
x4
x10
⟶
not
(
x0
x3
x10
)
⟶
False
)
⟶
(
not
(
x0
x2
x12
)
⟶
not
(
x0
x2
x13
)
⟶
x0
x2
x15
⟶
not
(
x0
x2
x14
)
⟶
False
)
⟶
(
x0
x2
x10
⟶
x0
x2
x16
⟶
x0
x4
x16
⟶
not
(
x0
x3
x10
)
⟶
False
)
⟶
False
...