Search for blocks/addresses/...
Proofgold Asset
asset id
88ea98d03fa251cd87238fed90749e6334406fe45b05e005cc14c5b58aac3b25
asset hash
351c4d442e50f205aa92256b0e48cc124c00272951b34b3c2a4e3fe6f1521288
bday / block
22005
tx
d906f..
preasset
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
u23
:=
ordsucc
u22
Definition
u24
:=
ordsucc
u23
Definition
u25
:=
ordsucc
u24
Definition
u26
:=
ordsucc
u25
Definition
u27
:=
ordsucc
u26
Definition
u28
:=
ordsucc
u27
Definition
u29
:=
ordsucc
u28
Definition
u30
:=
ordsucc
u29
Definition
u31
:=
ordsucc
u30
Definition
u32
:=
ordsucc
u31
Definition
u33
:=
ordsucc
u32
Definition
u34
:=
ordsucc
u33
Definition
u35
:=
ordsucc
u34
Definition
u36
:=
ordsucc
u35
Definition
u37
:=
ordsucc
u36
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
4aca7..
:
nat_p
u36
Theorem
36e82..
:
nat_p
u37
(proof)
Definition
u38
:=
ordsucc
u37
Theorem
b010c..
:
nat_p
u38
(proof)
Definition
u39
:=
ordsucc
u38
Theorem
29daf..
:
nat_p
u39
(proof)
Definition
u40
:=
ordsucc
u39
Theorem
9c301..
:
nat_p
u40
(proof)
Definition
u41
:=
ordsucc
u40
Theorem
61d53..
:
nat_p
u41
(proof)
Definition
u42
:=
ordsucc
u41
Theorem
aacd7..
:
nat_p
u42
(proof)
Definition
u43
:=
ordsucc
u42
Theorem
c4565..
:
nat_p
u43
(proof)
Definition
u44
:=
ordsucc
u43
Theorem
28e92..
:
nat_p
u44
(proof)
Definition
u45
:=
ordsucc
u44
Theorem
3c299..
:
nat_p
u45
(proof)
Definition
u46
:=
ordsucc
u45
Theorem
de546..
:
nat_p
u46
(proof)
Definition
u47
:=
ordsucc
u46
Theorem
470e1..
:
nat_p
u47
(proof)
Definition
u48
:=
ordsucc
u47
Theorem
12596..
:
nat_p
u48
(proof)
Definition
u49
:=
ordsucc
u48
Theorem
ea244..
:
nat_p
u49
(proof)
Definition
u50
:=
ordsucc
u49
Theorem
d7080..
:
nat_p
u50
(proof)
Definition
u51
:=
ordsucc
u50
Theorem
81538..
:
nat_p
u51
(proof)
Definition
u52
:=
ordsucc
u51
Theorem
95d3a..
:
nat_p
u52
(proof)
Definition
u53
:=
ordsucc
u52
Theorem
3c6e6..
:
nat_p
u53
(proof)
Definition
u54
:=
ordsucc
u53
Theorem
b9629..
:
nat_p
u54
(proof)
Definition
u55
:=
ordsucc
u54
Theorem
008c1..
:
nat_p
u55
(proof)
Definition
u56
:=
ordsucc
u55
Theorem
59b49..
:
nat_p
u56
(proof)
Definition
u57
:=
ordsucc
u56
Theorem
aa500..
:
nat_p
u57
(proof)
Definition
u58
:=
ordsucc
u57
Theorem
74d52..
:
nat_p
u58
(proof)
Definition
u59
:=
ordsucc
u58
Theorem
417f8..
:
nat_p
u59
(proof)
Definition
u60
:=
ordsucc
u59
Theorem
563e5..
:
nat_p
u60
(proof)
Definition
u61
:=
ordsucc
u60
Theorem
71f8e..
:
nat_p
u61
(proof)
Definition
u62
:=
ordsucc
u61
Theorem
15f7b..
:
nat_p
u62
(proof)
Definition
u63
:=
ordsucc
u62
Theorem
afba1..
:
nat_p
u63
(proof)
Definition
u64
:=
ordsucc
u63
Theorem
5a366..
:
nat_p
u64
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_4
nat_4
:
nat_p
4
Known
nat_3
nat_3
:
nat_p
3
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
35651..
:
add_nat
u13
u5
=
u18
(proof)
Known
nat_5
nat_5
:
nat_p
5
Theorem
37308..
:
add_nat
u19
u6
=
u25
(proof)
Known
nat_6
nat_6
:
nat_p
6
Theorem
4c9e0..
:
add_nat
u26
u7
=
u33
(proof)
Known
nat_7
nat_7
:
nat_p
7
Theorem
7e9d6..
:
add_nat
u34
u8
=
u42
(proof)
Known
nat_12
nat_12
:
nat_p
12
Known
nat_11
nat_11
:
nat_p
11
Known
nat_10
nat_10
:
nat_p
10
Known
nat_9
nat_9
:
nat_p
9
Known
nat_8
nat_8
:
nat_p
8
Theorem
a2eda..
:
add_nat
u51
u13
=
u64
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
caaf4..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_nat
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
exp_nat
x0
x1
)
Known
337ce..
:
exp_nat
u2
u6
=
u64
Known
6cce6..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
u2
x0
=
add_nat
x0
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
4d87b..
:
∀ x0 x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
Known
nat_14
nat_14
:
nat_p
14
Known
nat_13
nat_13
:
nat_p
13
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
add_nat_asso
add_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
(
add_nat
x0
x1
)
x2
=
add_nat
x0
(
add_nat
x1
x2
)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
9db25..
:
add_nat
u51
u63
⊆
exp_nat
u2
u7
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Theorem
9cc32..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
x1
∈
x2
⟶
add_nat
x1
x0
∈
add_nat
x2
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
1fe5e..
:
∀ x0 x1 x2 .
nat_p
x0
⟶
nat_p
x1
⟶
nat_p
x2
⟶
x0
⊆
x1
⟶
add_nat
x0
x2
⊆
add_nat
x1
x2
(proof)
Theorem
66af2..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
nat_p
x2
⟶
nat_p
x3
⟶
x0
⊆
x2
⟶
x1
⊆
x3
⟶
add_nat
x0
x1
⊆
add_nat
x2
x3
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
24234..
:
nat_p
u26
Known
e06fe..
:
nat_p
u27
Known
183e4..
:
nat_p
u34
Known
ffdd1..
:
nat_p
u33
Known
1f846..
:
nat_p
u32
Known
74918..
:
nat_p
u31
Known
bf663..
:
add_nat
u31
u27
=
u58
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
164da..
TwoRamseyProp_bd
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
x1
(
ordsucc
x2
)
⟶
TwoRamseyProp
x0
(
ordsucc
x1
)
(
ordsucc
x3
)
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
ordsucc
(
add_nat
x2
x3
)
)
)
Known
f0d6f..
TwoRamseyProp_2
:
∀ x0 .
TwoRamseyProp
2
x0
x0
Known
d9e2e..
:
nat_p
u19
Known
20c1f..
:
add_nat
u31
u19
=
u50
Known
TwoRamseyProp_u4_u5_u32
:
TwoRamseyProp
u4
u5
u32
Known
TwoRamseyProp_3_5_14
TwoRamseyProp_3_5_14
:
TwoRamseyProp
3
5
14
Theorem
TwoRamseyProp_4_8_Power_7
TwoRamseyProp_4_8_Power_7
:
TwoRamseyProp
4
8
(
prim4
7
)
(proof)
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Theorem
TwoRamseyProp_4_9_Power_8
TwoRamseyProp_4_9_Power_8
:
TwoRamseyProp
4
9
(
prim4
8
)
(proof)