Search for blocks/addresses/...
Proofgold Asset
asset id
8afcdaad620b23f0f882a4ca1d7bd9d3b0109b9fb3f72e8f446ca7a71fa66788
asset hash
7cfcf41f85d986fd11e1aa37392b6a66ee640e3128475010dc334cfe230ecd28
bday / block
35121
tx
5bca5..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
c10c0..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 x4 :
ι →
ι → ο
.
∀ x5 :
ι → ι
.
∀ x6 :
ι →
ι → ο
.
∀ x7 :
ι → ι
.
∀ x8 .
∀ x9 x10 :
ι → ι
.
∀ x11 :
ι →
ι → ι
.
∀ x12 :
ι → ι
.
∀ x13 :
ι →
ι → ι
.
∀ x14 x15 .
∀ x16 :
ι →
ι →
ι → ι
.
∀ x17 :
ι →
ι → ι
.
∀ x18 :
ι →
ι →
ι → ι
.
∀ x19 :
ι →
ι → ι
.
∀ x20 x21 .
∀ x22 :
ι → ι
.
∀ x23 .
∀ x24 :
ι → ο
.
(
∀ x25 x26 .
x24
x26
⟶
(
x26
=
x25
⟶
False
)
⟶
x24
x25
⟶
False
)
⟶
(
∀ x25 x26 .
x0
x25
x26
⟶
x24
x26
⟶
False
)
⟶
(
∀ x25 .
x24
x25
⟶
(
x25
=
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x0
x25
x26
⟶
x2
x26
(
x1
x27
)
⟶
x24
x27
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x0
x26
x27
⟶
x2
x27
(
x1
x25
)
⟶
(
x2
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x3
x26
x25
⟶
(
x2
x26
(
x1
x25
)
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x2
x26
(
x1
x25
)
⟶
(
x3
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x2
x25
x26
⟶
(
x24
x26
⟶
False
)
⟶
(
x0
x25
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x0
x26
x25
⟶
(
x2
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x4
x25
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x3
x25
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x24
x25
⟶
False
)
⟶
(
x6
(
x5
x25
)
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x24
x25
⟶
False
)
⟶
(
x2
(
x5
x25
)
(
x1
x25
)
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
x6
(
x7
x25
)
x25
⟶
False
)
⟶
(
∀ x25 .
(
x2
(
x7
x25
)
(
x1
x25
)
⟶
False
)
⟶
False
)
⟶
(
x24
x8
⟶
False
)
⟶
(
∀ x25 .
(
x24
(
x22
x25
)
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x2
(
x22
x25
)
(
x1
x25
)
⟶
False
)
⟶
False
)
⟶
(
(
x24
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
(
x24
x25
⟶
False
)
⟶
x24
(
x9
x25
)
⟶
False
)
⟶
(
∀ x25 .
(
x24
x25
⟶
False
)
⟶
(
x2
(
x9
x25
)
(
x1
x25
)
⟶
False
)
⟶
False
)
⟶
(
(
x24
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x25 .
x24
(
x1
x25
)
⟶
False
)
⟶
(
∀ x25 .
(
x2
(
x10
x25
)
x25
⟶
False
)
⟶
False
)
⟶
(
(
x24
x20
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x0
(
x11
x25
x26
)
x25
⟶
(
x3
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
(
x0
(
x11
x25
x26
)
x26
⟶
False
)
⟶
(
x3
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x3
x26
x27
⟶
x0
x25
x26
⟶
(
x0
x25
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x0
x26
x27
⟶
x3
x26
(
x19
x25
x27
)
⟶
(
x4
x27
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
(
x0
(
x19
x25
x26
)
x25
⟶
False
)
⟶
(
x4
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x4
x26
x27
⟶
x0
x25
x27
⟶
(
x3
(
x18
x25
x27
x26
)
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
x4
x26
x27
⟶
x0
x25
x27
⟶
(
x0
(
x18
x25
x27
x26
)
x26
⟶
False
)
⟶
False
)
⟶
(
(
x23
=
x20
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x26
=
x23
⟶
x25
=
x23
⟶
(
x25
=
x12
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x26
=
x23
⟶
x25
=
x12
x26
⟶
(
x25
=
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
(
x27
=
x23
⟶
False
)
⟶
x0
x25
x27
⟶
(
x0
(
x13
x26
x27
)
x25
⟶
False
)
⟶
(
x0
(
x13
x26
x27
)
x26
⟶
False
)
⟶
(
x26
=
x12
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
(
x26
=
x23
⟶
False
)
⟶
x0
(
x13
x25
x26
)
x25
⟶
x0
(
x13
x25
x26
)
(
x17
x25
x26
)
⟶
(
x25
=
x12
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
(
x26
=
x23
⟶
False
)
⟶
x0
(
x13
x25
x26
)
x25
⟶
(
x0
(
x17
x25
x26
)
x26
⟶
False
)
⟶
(
x25
=
x12
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
(
x27
=
x23
⟶
False
)
⟶
x25
=
x12
x27
⟶
x0
x26
(
x16
x26
x25
x27
)
⟶
(
x0
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 .
(
x27
=
x23
⟶
False
)
⟶
x25
=
x12
x27
⟶
(
x0
(
x16
x26
x25
x27
)
x27
⟶
False
)
⟶
(
x0
x26
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 x27 x28 .
(
x28
=
x23
⟶
False
)
⟶
x25
=
x12
x28
⟶
x0
x27
x25
⟶
x0
x26
x28
⟶
(
x0
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x24
x26
⟶
x2
x25
(
x1
x26
)
⟶
x6
x25
x26
⟶
False
)
⟶
(
∀ x25 x26 .
(
x24
x26
⟶
False
)
⟶
x2
x25
(
x1
x26
)
⟶
x24
x25
⟶
(
x6
x25
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
(
x24
x26
⟶
False
)
⟶
x2
x25
(
x1
x26
)
⟶
(
x6
x25
x26
⟶
False
)
⟶
x24
x25
⟶
False
)
⟶
(
∀ x25 x26 .
x24
x26
⟶
x2
x25
(
x1
x26
)
⟶
(
x24
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x25 x26 .
x0
x25
x26
⟶
x0
x26
x25
⟶
False
)
⟶
(
x3
(
x12
x14
)
(
x12
x15
)
⟶
False
)
⟶
(
x15
=
x23
⟶
False
)
⟶
(
(
x4
x14
x15
⟶
False
)
⟶
False
)
⟶
False
(proof)