Search for blocks/addresses/...
Proofgold Asset
asset id
80715e069823c9bf974927c08f064b932fcf66090efcd09eae752f8d43ec9cef
asset hash
8b79df68f73973c07075d663048bb0f443c2fec46a8e5ad3ca5af695832939b4
bday / block
1652
tx
336f4..
preasset
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
True
:=
∀ x0 : ο .
x0
⟶
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
FalseE
:
False
⟶
∀ x0 : ο .
x0
(proof)
Theorem
TrueI
:
True
(proof)
Theorem
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
(proof)
Theorem
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
(proof)
Theorem
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
(proof)
Theorem
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
(proof)
Theorem
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
(proof)
Theorem
orE
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
or
x0
x1
⟶
x2
(proof)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Theorem
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
(proof)
Theorem
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
(proof)
Theorem
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
(proof)
Theorem
iff_refl
:
∀ x0 : ο .
iff
x0
x0
(proof)
Known
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
91630..
:=
λ x0 .
prim2
x0
x0
Definition
7ee77..
:=
λ x0 x1 .
prim2
(
prim2
x0
x1
)
(
91630..
x0
)
Definition
c2e41..
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
and
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x1
)
(
prim1
(
7ee77..
x4
x6
)
x3
)
⟶
x5
)
⟶
x5
)
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
prim1
(
7ee77..
x6
x4
)
x3
)
⟶
x5
)
⟶
x5
)
)
(
∀ x4 x5 x6 x7 .
prim1
(
7ee77..
x4
x5
)
x3
⟶
prim1
(
7ee77..
x6
x7
)
x3
⟶
iff
(
x4
=
x6
)
(
x5
=
x7
)
)
⟶
x2
)
⟶
x2
Known
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Known
0ddd1..
:
∀ x0 x1 .
(
∀ x2 .
iff
(
prim1
x2
x0
)
(
prim1
x2
x1
)
)
⟶
x0
=
x1
Known
53c21..
:
∀ x0 x1 x2 .
iff
(
prim1
x0
(
prim2
x1
x2
)
)
(
or
(
x0
=
x1
)
(
x0
=
x2
)
)
Known
UnionEq
:
∀ x0 x1 .
iff
(
prim1
x1
(
prim3
x0
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x1
x3
)
(
prim1
x3
x0
)
⟶
x2
)
⟶
x2
)
Known
e8b3c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 x4 .
x1
x2
x3
⟶
x1
x2
x4
⟶
x3
=
x4
)
⟶
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 .
iff
(
prim1
x4
x3
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
x1
x6
x4
)
⟶
x5
)
⟶
x5
)
)
⟶
x2
)
⟶
x2
Theorem
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
(proof)
Theorem
pred_ext
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
iff
(
x0
x2
)
(
x1
x2
)
)
⟶
x0
=
x1
(proof)
Theorem
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
(proof)
Theorem
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
(proof)
Theorem
2532b..
:
∀ x0 x1 x2 .
prim1
x0
(
prim2
x1
x2
)
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
(proof)
Theorem
67787..
:
∀ x0 x1 .
prim1
x0
(
prim2
x0
x1
)
(proof)
Theorem
5a932..
:
∀ x0 x1 .
prim1
x1
(
prim2
x0
x1
)
(proof)
Theorem
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
(proof)
Theorem
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
(proof)
Theorem
0117f..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 .
nIn
x2
x1
)
⟶
x0
)
⟶
x0
(proof)
Definition
4a7ef..
:=
prim0
(
λ x0 .
∀ x1 .
nIn
x1
x0
)
Theorem
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
(proof)
Theorem
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
(proof)
Theorem
UnionI
:
∀ x0 x1 x2 .
prim1
x1
x2
⟶
prim1
x2
x0
⟶
prim1
x1
(
prim3
x0
)
(proof)
Theorem
UnionE
:
∀ x0 x1 .
prim1
x1
(
prim3
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x1
x3
)
(
prim1
x3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
UnionE_impred
:
∀ x0 x1 .
prim1
x1
(
prim3
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
prim1
x1
x3
⟶
prim1
x3
x0
⟶
x2
)
⟶
x2
(proof)
Definition
c2f57..
:=
λ x0 :
ι → ο
.
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 .
iff
(
prim1
x3
x2
)
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Definition
707e2..
:=
λ x0 :
ι → ο
.
prim0
(
λ x1 .
∀ x2 .
iff
(
prim1
x2
x1
)
(
x0
x2
)
)
Theorem
8098c..
:
∀ x0 :
ι → ο
.
c2f57..
x0
⟶
∀ x1 .
iff
(
prim1
x1
(
707e2..
x0
)
)
(
x0
x1
)
(proof)
Theorem
bbc77..
:
∀ x0 :
ι → ο
.
c2f57..
x0
⟶
∀ x1 .
x0
x1
⟶
prim1
x1
(
707e2..
x0
)
(proof)
Theorem
477e8..
:
∀ x0 :
ι → ο
.
c2f57..
x0
⟶
∀ x1 .
prim1
x1
(
707e2..
x0
)
⟶
x0
x1
(proof)
Theorem
b2728..
:
∀ x0 .
c2f57..
(
λ x1 .
prim1
x1
x0
)
(proof)
Theorem
71e64..
:
∀ x0 .
707e2..
(
λ x2 .
prim1
x2
x0
)
=
x0
(proof)
Theorem
f336f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 .
iff
(
prim1
x4
x3
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
x4
=
x1
x6
)
⟶
x5
)
⟶
x5
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
94f9e..
:=
λ x0 .
λ x1 :
ι → ι
.
prim0
(
λ x2 .
∀ x3 .
iff
(
prim1
x3
x2
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x3
=
x1
x5
)
⟶
x4
)
⟶
x4
)
)
Theorem
b81d7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
prim1
x2
(
94f9e..
x0
x1
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
(proof)
Theorem
6acac..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
15fbb..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 .
iff
(
prim1
x4
x3
)
(
and
(
prim1
x4
x0
)
(
x1
x4
)
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
1216a..
:=
λ x0 .
λ x1 :
ι → ο
.
prim0
(
λ x2 .
∀ x3 .
iff
(
prim1
x3
x2
)
(
and
(
prim1
x3
x0
)
(
x1
x3
)
)
)
Theorem
92823..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
iff
(
prim1
x2
(
1216a..
x0
x1
)
)
(
and
(
prim1
x2
x0
)
(
x1
x2
)
)
(proof)
Theorem
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
(proof)
Theorem
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
(proof)
Theorem
492ff..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
∀ x3 : ο .
(
prim1
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
(proof)
Definition
a4c2a..
:=
λ x0 .
λ x1 :
ι → ο
.
94f9e..
(
1216a..
x0
x1
)
Theorem
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
(proof)
Theorem
ca584..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
and
(
x1
x5
)
(
x3
=
x2
x5
)
)
⟶
x4
)
⟶
x4
(proof)
Theorem
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
(proof)
Definition
3b429..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x4 .
a4c2a..
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
)
)
Theorem
81c0c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
(
x1
x4
)
⟶
x2
x4
x5
⟶
prim1
(
x3
x4
x5
)
(
3b429..
x0
x1
x2
x3
)
(proof)
Theorem
0cbcb..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
prim1
x4
(
3b429..
x0
x1
x2
x3
)
⟶
∀ x5 : ο .
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
(
x1
x6
)
⟶
x2
x6
x7
⟶
x4
=
x3
x6
x7
⟶
x5
)
⟶
x5
(proof)
Theorem
c4419..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
prim1
x4
(
3b429..
x0
x1
x2
x3
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
(
x1
x6
)
)
(
and
(
x2
x6
x8
)
(
x4
=
x3
x6
x8
)
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
(proof)
Definition
85402..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι →
ι → ο
.
λ x4 :
ι →
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x5 .
3b429..
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
)
)
Theorem
abff8..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ο
.
∀ x4 :
ι →
ι →
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
(
x1
x5
)
⟶
∀ x7 .
prim1
x7
(
x2
x5
x6
)
⟶
x3
x5
x6
x7
⟶
prim1
(
x4
x5
x6
x7
)
(
85402..
x0
x1
x2
x3
x4
)
(proof)
Theorem
9b3dc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ο
.
∀ x4 :
ι →
ι →
ι → ι
.
∀ x5 .
prim1
x5
(
85402..
x0
x1
x2
x3
x4
)
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
(
x1
x7
)
⟶
∀ x9 .
prim1
x9
(
x2
x7
x8
)
⟶
x3
x7
x8
x9
⟶
x5
=
x4
x7
x8
x9
⟶
x6
)
⟶
x6
(proof)
Theorem
7d382..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ο
.
∀ x4 :
ι →
ι →
ι → ι
.
∀ x5 .
prim1
x5
(
85402..
x0
x1
x2
x3
x4
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
(
x1
x7
)
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
(
x2
x7
x9
)
)
(
and
(
x3
x7
x9
x11
)
(
x5
=
x4
x7
x9
x11
)
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
(proof)
Definition
f6efa..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι →
ι → ι
.
λ x4 :
ι →
ι →
ι →
ι → ο
.
λ x5 :
ι →
ι →
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x6 .
85402..
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
)
)
Theorem
05e93..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ο
.
∀ x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
(
x1
x6
)
⟶
∀ x8 .
prim1
x8
(
x2
x6
x7
)
⟶
∀ x9 .
prim1
x9
(
x3
x6
x7
x8
)
⟶
x4
x6
x7
x8
x9
⟶
prim1
(
x5
x6
x7
x8
x9
)
(
f6efa..
x0
x1
x2
x3
x4
x5
)
(proof)
Theorem
fd818..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ο
.
∀ x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 .
prim1
x6
(
f6efa..
x0
x1
x2
x3
x4
x5
)
⟶
∀ x7 : ο .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
(
x1
x8
)
⟶
∀ x10 .
prim1
x10
(
x2
x8
x9
)
⟶
∀ x11 .
prim1
x11
(
x3
x8
x9
x10
)
⟶
x4
x8
x9
x10
x11
⟶
x6
=
x5
x8
x9
x10
x11
⟶
x7
)
⟶
x7
(proof)
Theorem
5a2be..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ο
.
∀ x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 .
prim1
x6
(
f6efa..
x0
x1
x2
x3
x4
x5
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
prim1
x10
(
x1
x8
)
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
(
x2
x8
x10
)
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
(
x3
x8
x10
x12
)
)
(
and
(
x4
x8
x10
x12
x14
)
(
x6
=
x5
x8
x10
x12
x14
)
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
(proof)
Definition
2aab0..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι →
ι → ι
.
λ x4 :
ι →
ι →
ι →
ι → ι
.
λ x5 :
ι →
ι →
ι →
ι →
ι → ο
.
λ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x7 .
f6efa..
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
)
)
Theorem
d73e9..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ο
.
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
(
x1
x7
)
⟶
∀ x9 .
prim1
x9
(
x2
x7
x8
)
⟶
∀ x10 .
prim1
x10
(
x3
x7
x8
x9
)
⟶
∀ x11 .
prim1
x11
(
x4
x7
x8
x9
x10
)
⟶
x5
x7
x8
x9
x10
x11
⟶
prim1
(
x6
x7
x8
x9
x10
x11
)
(
2aab0..
x0
x1
x2
x3
x4
x5
x6
)
(proof)
Theorem
7f213..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ο
.
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 .
prim1
x7
(
2aab0..
x0
x1
x2
x3
x4
x5
x6
)
⟶
∀ x8 : ο .
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
(
x1
x9
)
⟶
∀ x11 .
prim1
x11
(
x2
x9
x10
)
⟶
∀ x12 .
prim1
x12
(
x3
x9
x10
x11
)
⟶
∀ x13 .
prim1
x13
(
x4
x9
x10
x11
x12
)
⟶
x5
x9
x10
x11
x12
x13
⟶
x7
=
x6
x9
x10
x11
x12
x13
⟶
x8
)
⟶
x8
(proof)
Theorem
2e748..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ο
.
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 .
prim1
x7
(
2aab0..
x0
x1
x2
x3
x4
x5
x6
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
(
x1
x9
)
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
(
x2
x9
x11
)
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
(
x3
x9
x11
x13
)
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
prim1
x17
(
x4
x9
x11
x13
x15
)
)
(
and
(
x5
x9
x11
x13
x15
x17
)
(
x7
=
x6
x9
x11
x13
x15
x17
)
)
⟶
x16
)
⟶
x16
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
(proof)
Definition
6cd44..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι →
ι → ι
.
λ x4 :
ι →
ι →
ι →
ι → ι
.
λ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x8 .
2aab0..
(
x1
x8
)
(
x2
x8
)
(
x3
x8
)
(
x4
x8
)
(
x5
x8
)
(
x6
x8
)
(
x7
x8
)
)
)
Theorem
803ff..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
(
x1
x8
)
⟶
∀ x10 .
prim1
x10
(
x2
x8
x9
)
⟶
∀ x11 .
prim1
x11
(
x3
x8
x9
x10
)
⟶
∀ x12 .
prim1
x12
(
x4
x8
x9
x10
x11
)
⟶
∀ x13 .
prim1
x13
(
x5
x8
x9
x10
x11
x12
)
⟶
x6
x8
x9
x10
x11
x12
x13
⟶
prim1
(
x7
x8
x9
x10
x11
x12
x13
)
(
6cd44..
x0
x1
x2
x3
x4
x5
x6
x7
)
(proof)
Theorem
8029f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 .
prim1
x8
(
6cd44..
x0
x1
x2
x3
x4
x5
x6
x7
)
⟶
∀ x9 : ο .
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
(
x1
x10
)
⟶
∀ x12 .
prim1
x12
(
x2
x10
x11
)
⟶
∀ x13 .
prim1
x13
(
x3
x10
x11
x12
)
⟶
∀ x14 .
prim1
x14
(
x4
x10
x11
x12
x13
)
⟶
∀ x15 .
prim1
x15
(
x5
x10
x11
x12
x13
x14
)
⟶
x6
x10
x11
x12
x13
x14
x15
⟶
x8
=
x7
x10
x11
x12
x13
x14
x15
⟶
x9
)
⟶
x9
(proof)
Theorem
2ffba..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 .
prim1
x8
(
6cd44..
x0
x1
x2
x3
x4
x5
x6
x7
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
prim1
x12
(
x1
x10
)
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
prim1
x14
(
x2
x10
x12
)
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
prim1
x16
(
x3
x10
x12
x14
)
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
prim1
x18
(
x4
x10
x12
x14
x16
)
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
prim1
x20
(
x5
x10
x12
x14
x16
x18
)
)
(
and
(
x6
x10
x12
x14
x16
x18
x20
)
(
x8
=
x7
x10
x12
x14
x16
x18
x20
)
)
⟶
x19
)
⟶
x19
)
⟶
x17
)
⟶
x17
)
⟶
x15
)
⟶
x15
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
(proof)
Definition
e5d4c..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι →
ι → ι
.
λ x4 :
ι →
ι →
ι →
ι → ι
.
λ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ο
.
λ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
prim3
(
94f9e..
x0
(
λ x9 .
6cd44..
(
x1
x9
)
(
x2
x9
)
(
x3
x9
)
(
x4
x9
)
(
x5
x9
)
(
x6
x9
)
(
x7
x9
)
(
x8
x9
)
)
)
Theorem
79851..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
(
x1
x9
)
⟶
∀ x11 .
prim1
x11
(
x2
x9
x10
)
⟶
∀ x12 .
prim1
x12
(
x3
x9
x10
x11
)
⟶
∀ x13 .
prim1
x13
(
x4
x9
x10
x11
x12
)
⟶
∀ x14 .
prim1
x14
(
x5
x9
x10
x11
x12
x13
)
⟶
∀ x15 .
prim1
x15
(
x6
x9
x10
x11
x12
x13
x14
)
⟶
x7
x9
x10
x11
x12
x13
x14
x15
⟶
prim1
(
x8
x9
x10
x11
x12
x13
x14
x15
)
(
e5d4c..
x0
x1
x2
x3
x4
x5
x6
x7
x8
)
(proof)
Theorem
48be8..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x9 .
prim1
x9
(
e5d4c..
x0
x1
x2
x3
x4
x5
x6
x7
x8
)
⟶
∀ x10 : ο .
(
∀ x11 .
prim1
x11
x0
⟶
∀ x12 .
prim1
x12
(
x1
x11
)
⟶
∀ x13 .
prim1
x13
(
x2
x11
x12
)
⟶
∀ x14 .
prim1
x14
(
x3
x11
x12
x13
)
⟶
∀ x15 .
prim1
x15
(
x4
x11
x12
x13
x14
)
⟶
∀ x16 .
prim1
x16
(
x5
x11
x12
x13
x14
x15
)
⟶
∀ x17 .
prim1
x17
(
x6
x11
x12
x13
x14
x15
x16
)
⟶
x7
x11
x12
x13
x14
x15
x16
x17
⟶
x9
=
x8
x11
x12
x13
x14
x15
x16
x17
⟶
x10
)
⟶
x10
(proof)
Theorem
fb4aa..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι →
ι → ι
.
∀ x4 :
ι →
ι →
ι →
ι → ι
.
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x9 .
prim1
x9
(
e5d4c..
x0
x1
x2
x3
x4
x5
x6
x7
x8
)
⟶
∀ x10 : ο .
(
∀ x11 .
and
(
prim1
x11
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
prim1
x13
(
x1
x11
)
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
prim1
x15
(
x2
x11
x13
)
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
prim1
x17
(
x3
x11
x13
x15
)
)
(
∀ x18 : ο .
(
∀ x19 .
and
(
prim1
x19
(
x4
x11
x13
x15
x17
)
)
(
∀ x20 : ο .
(
∀ x21 .
and
(
prim1
x21
(
x5
x11
x13
x15
x17
x19
)
)
(
∀ x22 : ο .
(
∀ x23 .
and
(
prim1
x23
(
x6
x11
x13
x15
x17
x19
x21
)
)
(
and
(
x7
x11
x13
x15
x17
x19
x21
x23
)
(
x9
=
x8
x11
x13
x15
x17
x19
x21
x23
)
)
⟶
x22
)
⟶
x22
)
⟶
x20
)
⟶
x20
)
⟶
x18
)
⟶
x18
)
⟶
x16
)
⟶
x16
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
(proof)
Definition
f8922..
:=
λ x0 :
(
ι → ι
)
→ ο
.
∀ x1 :
(
ι → ι
)
→ ι
.
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 :
ι → ι
.
x0
x4
⟶
x4
x3
=
x1
x4
)
⟶
x2
)
⟶
x2
Theorem
674bb..
:
∀ x0 x1 :
(
ι → ι
)
→ ο
.
f8922..
x1
⟶
(
∀ x2 :
ι → ι
.
x0
x2
⟶
x1
x2
)
⟶
f8922..
x0
(proof)
Definition
fa4ab..
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 :
(
ι → ι
)
→ ι
.
prim0
(
λ x2 .
∀ x3 :
ι → ι
.
x0
x3
⟶
x3
x2
=
x1
x3
)
Theorem
0f560..
:
∀ x0 :
(
ι → ι
)
→ ο
.
f8922..
x0
⟶
∀ x1 :
ι → ι
.
x0
x1
⟶
∀ x2 :
(
ι → ι
)
→ ι
.
x1
(
fa4ab..
x0
x2
)
=
x2
x1
(proof)
Definition
e8533..
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 .
x1
=
fa4ab..
x0
(
λ x3 :
ι → ι
.
x3
x1
)
Theorem
a4074..
:
∀ x0 :
(
ι → ι
)
→ ο
.
f8922..
x0
⟶
∀ x1 .
fa4ab..
x0
(
λ x3 :
ι → ι
.
x3
x1
)
=
fa4ab..
x0
(
λ x3 :
ι → ι
.
x3
(
fa4ab..
x0
(
λ x4 :
ι → ι
.
x4
x1
)
)
)
(proof)
Theorem
5bcd7..
:
∀ x0 :
(
ι → ι
)
→ ο
.
f8922..
x0
⟶
∀ x1 .
e8533..
x0
(
fa4ab..
x0
(
λ x2 :
ι → ι
.
x2
x1
)
)
(proof)
Definition
cdba9..
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 x2 .
∀ x3 :
ι → ι
.
x0
x3
⟶
x3
x1
=
x3
x2
Theorem
3c94a..
:
∀ x0 :
(
ι → ι
)
→ ο
.
∀ x1 .
cdba9..
x0
x1
x1
(proof)
Theorem
b8753..
:
∀ x0 :
(
ι → ι
)
→ ο
.
∀ x1 x2 .
cdba9..
x0
x1
x2
⟶
cdba9..
x0
x2
x1
(proof)
Theorem
43dff..
:
∀ x0 :
(
ι → ι
)
→ ο
.
∀ x1 x2 x3 .
cdba9..
x0
x1
x2
⟶
cdba9..
x0
x2
x3
⟶
cdba9..
x0
x1
x3
(proof)
Definition
7bebd..
:=
λ x0 :
ι → ι
.
λ x1 .
True
Definition
5eb06..
:=
λ x0 :
ι → ι
.
λ x1 .
and
(
7bebd..
x0
x1
)
(
e8533..
(
λ x2 :
ι → ι
.
x2
=
x0
)
x1
)
Definition
cde91..
:=
λ x0 :
ι → ι
.
λ x1 .
∀ x2 .
nIn
x2
(
x0
x1
)
Definition
52b09..
:=
λ x0 :
ι → ι
.
λ x1 .
not
(
cde91..
x0
x1
)
Definition
9a7b4..
:=
λ x0 x1 :
ι → ι
.
λ x2 .
prim1
(
x1
x2
)
(
x0
x2
)
Definition
1ba2d..
:=
λ x0 x1 :
ι → ι
.
λ x2 .
and
(
9a7b4..
x0
x1
x2
)
(
e8533..
(
λ x3 :
ι → ι
.
or
(
x3
=
x0
)
(
x3
=
x1
)
)
x2
)
Definition
fa71f..
:=
λ x0 x1 x2 :
ι → ι
.
λ x3 .
and
(
9a7b4..
x0
x1
x3
)
(
9a7b4..
x0
x2
x3
)
Definition
3c39d..
:=
λ x0 x1 x2 :
ι → ι
.
λ x3 .
and
(
fa71f..
x0
x1
x2
x3
)
(
e8533..
(
λ x4 :
ι → ι
.
or
(
or
(
x4
=
x0
)
(
x4
=
x1
)
)
(
x4
=
x2
)
)
x3
)
Theorem
500f6..
:
∀ x0 x1 :
ι → ι
.
not
(
x0
=
x1
)
⟶
f8922..
(
λ x2 :
ι → ι
.
or
(
x2
=
x0
)
(
x2
=
x1
)
)
⟶
∀ x2 .
9a7b4..
x0
x1
x2
⟶
7bebd..
x0
x2
(proof)
Theorem
500f6..
:
∀ x0 x1 :
ι → ι
.
not
(
x0
=
x1
)
⟶
f8922..
(
λ x2 :
ι → ι
.
or
(
x2
=
x0
)
(
x2
=
x1
)
)
⟶
∀ x2 .
9a7b4..
x0
x1
x2
⟶
7bebd..
x0
x2
(proof)
Theorem
ea617..
:
∀ x0 x1 x2 :
ι → ι
.
not
(
x0
=
x1
)
⟶
not
(
x0
=
x2
)
⟶
not
(
x1
=
x2
)
⟶
f8922..
(
λ x3 :
ι → ι
.
or
(
or
(
x3
=
x0
)
(
x3
=
x1
)
)
(
x3
=
x2
)
)
⟶
∀ x3 .
fa71f..
x0
x1
x2
x3
⟶
9a7b4..
x0
x1
x3
(proof)
Theorem
e5856..
:
∀ x0 x1 x2 :
ι → ι
.
not
(
x0
=
x1
)
⟶
not
(
x0
=
x2
)
⟶
not
(
x1
=
x2
)
⟶
f8922..
(
λ x3 :
ι → ι
.
or
(
or
(
x3
=
x0
)
(
x3
=
x1
)
)
(
x3
=
x2
)
)
⟶
∀ x3 .
fa71f..
x0
x1
x2
x3
⟶
9a7b4..
x0
x2
x3
(proof)
Definition
6ce64..
:=
λ x0 x1 :
ι → ι
.
λ x2 .
True
Definition
17176..
:=
λ x0 x1 :
ι → ι
.
λ x2 .
and
(
6ce64..
x0
x1
x2
)
(
e8533..
(
λ x3 :
ι → ι
.
or
(
x3
=
x0
)
(
x3
=
x1
)
)
x2
)