Search for blocks/addresses/...

Proofgold Asset

asset id
80715e069823c9bf974927c08f064b932fcf66090efcd09eae752f8d43ec9cef
asset hash
8b79df68f73973c07075d663048bb0f443c2fec46a8e5ad3ca5af695832939b4
bday / block
1652
tx
336f4..
preasset
doc published by PrGxv..
Definition False := ∀ x0 : ο . x0
Definition True := ∀ x0 : ο . x0x0
Definition not := λ x0 : ο . x0False
Theorem FalseE : False∀ x0 : ο . x0 (proof)
Theorem TrueI : True (proof)
Theorem notI : ∀ x0 : ο . (x0False)not x0 (proof)
Theorem notE : ∀ x0 : ο . not x0x0False (proof)
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Theorem andI : ∀ x0 x1 : ο . x0x1and x0 x1 (proof)
Theorem andEL : ∀ x0 x1 : ο . and x0 x1x0 (proof)
Theorem andER : ∀ x0 x1 : ο . and x0 x1x1 (proof)
Definition or := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Theorem orIL : ∀ x0 x1 : ο . x0or x0 x1 (proof)
Theorem orIR : ∀ x0 x1 : ο . x1or x0 x1 (proof)
Theorem orE : ∀ x0 x1 x2 : ο . (x0x2)(x1x2)or x0 x1x2 (proof)
Definition iff := λ x0 x1 : ο . and (x0x1) (x1x0)
Theorem iffEL : ∀ x0 x1 : ο . iff x0 x1x0x1 (proof)
Theorem iffER : ∀ x0 x1 : ο . iff x0 x1x1x0 (proof)
Theorem iffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1 (proof)
Theorem iff_refl : ∀ x0 : ο . iff x0 x0 (proof)
Known prop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Definition nIn := λ x0 x1 . not (prim1 x0 x1)
Definition Subq := λ x0 x1 . ∀ x2 . prim1 x2 x0prim1 x2 x1
Definition 91630.. := λ x0 . prim2 x0 x0
Definition 7ee77.. := λ x0 x1 . prim2 (prim2 x0 x1) (91630.. x0)
Definition c2e41.. := λ x0 x1 . ∀ x2 : ο . (∀ x3 . and (and (∀ x4 . prim1 x4 x0∀ x5 : ο . (∀ x6 . and (prim1 x6 x1) (prim1 (7ee77.. x4 x6) x3)x5)x5) (∀ x4 . prim1 x4 x1∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (prim1 (7ee77.. x6 x4) x3)x5)x5)) (∀ x4 x5 x6 x7 . prim1 (7ee77.. x4 x5) x3prim1 (7ee77.. x6 x7) x3iff (x4 = x6) (x5 = x7))x2)x2
Known Eps_i_ax : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (prim0 x0)
Known 0ddd1.. : ∀ x0 x1 . (∀ x2 . iff (prim1 x2 x0) (prim1 x2 x1))x0 = x1
Known 53c21.. : ∀ x0 x1 x2 . iff (prim1 x0 (prim2 x1 x2)) (or (x0 = x1) (x0 = x2))
Known UnionEq : ∀ x0 x1 . iff (prim1 x1 (prim3 x0)) (∀ x2 : ο . (∀ x3 . and (prim1 x1 x3) (prim1 x3 x0)x2)x2)
Known e8b3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 x4 . x1 x2 x3x1 x2 x4x3 = x4)∀ x2 : ο . (∀ x3 . (∀ x4 . iff (prim1 x4 x3) (∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (x1 x6 x4)x5)x5))x2)x2
Theorem Eps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0) (proof)
Theorem pred_ext : ∀ x0 x1 : ι → ο . (∀ x2 . iff (x0 x2) (x1 x2))x0 = x1 (proof)
Theorem prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1 (proof)
Theorem pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x1 x2x0 x2)x0 = x1 (proof)
Theorem 2532b.. : ∀ x0 x1 x2 . prim1 x0 (prim2 x1 x2)or (x0 = x1) (x0 = x2) (proof)
Theorem 67787.. : ∀ x0 x1 . prim1 x0 (prim2 x0 x1) (proof)
Theorem 5a932.. : ∀ x0 x1 . prim1 x1 (prim2 x0 x1) (proof)
Theorem e7a4c.. : ∀ x0 . prim1 x0 (91630.. x0) (proof)
Theorem fead7.. : ∀ x0 x1 . prim1 x1 (91630.. x0)x1 = x0 (proof)
Theorem 0117f.. : ∀ x0 : ο . (∀ x1 . (∀ x2 . nIn x2 x1)x0)x0 (proof)
Definition 4a7ef.. := prim0 (λ x0 . ∀ x1 . nIn x1 x0)
Theorem dcd83.. : ∀ x0 . nIn x0 4a7ef.. (proof)
Theorem xm : ∀ x0 : ο . or x0 (not x0) (proof)
Theorem UnionI : ∀ x0 x1 x2 . prim1 x1 x2prim1 x2 x0prim1 x1 (prim3 x0) (proof)
Theorem UnionE : ∀ x0 x1 . prim1 x1 (prim3 x0)∀ x2 : ο . (∀ x3 . and (prim1 x1 x3) (prim1 x3 x0)x2)x2 (proof)
Theorem UnionE_impred : ∀ x0 x1 . prim1 x1 (prim3 x0)∀ x2 : ο . (∀ x3 . prim1 x1 x3prim1 x3 x0x2)x2 (proof)
Definition c2f57.. := λ x0 : ι → ο . ∀ x1 : ο . (∀ x2 . (∀ x3 . iff (prim1 x3 x2) (x0 x3))x1)x1
Definition 707e2.. := λ x0 : ι → ο . prim0 (λ x1 . ∀ x2 . iff (prim1 x2 x1) (x0 x2))
Theorem 8098c.. : ∀ x0 : ι → ο . c2f57.. x0∀ x1 . iff (prim1 x1 (707e2.. x0)) (x0 x1) (proof)
Theorem bbc77.. : ∀ x0 : ι → ο . c2f57.. x0∀ x1 . x0 x1prim1 x1 (707e2.. x0) (proof)
Theorem 477e8.. : ∀ x0 : ι → ο . c2f57.. x0∀ x1 . prim1 x1 (707e2.. x0)x0 x1 (proof)
Theorem b2728.. : ∀ x0 . c2f57.. (λ x1 . prim1 x1 x0) (proof)
Theorem 71e64.. : ∀ x0 . 707e2.. (λ x2 . prim1 x2 x0) = x0 (proof)
Theorem f336f.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ο . (∀ x3 . (∀ x4 . iff (prim1 x4 x3) (∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (x4 = x1 x6)x5)x5))x2)x2 (proof)
Definition 94f9e.. := λ x0 . λ x1 : ι → ι . prim0 (λ x2 . ∀ x3 . iff (prim1 x3 x2) (∀ x4 : ο . (∀ x5 . and (prim1 x5 x0) (x3 = x1 x5)x4)x4))
Theorem b81d7.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . iff (prim1 x2 (94f9e.. x0 x1)) (∀ x3 : ο . (∀ x4 . and (prim1 x4 x0) (x2 = x1 x4)x3)x3) (proof)
Theorem 696c0.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0prim1 (x1 x2) (94f9e.. x0 x1) (proof)
Theorem 6acac.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 (94f9e.. x0 x1)∀ x3 : ο . (∀ x4 . and (prim1 x4 x0) (x2 = x1 x4)x3)x3 (proof)
Theorem 8c6f6.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 (94f9e.. x0 x1)∀ x3 : ο . (∀ x4 . prim1 x4 x0x2 = x1 x4x3)x3 (proof)
Theorem 15fbb.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ο . (∀ x3 . (∀ x4 . iff (prim1 x4 x3) (and (prim1 x4 x0) (x1 x4)))x2)x2 (proof)
Definition 1216a.. := λ x0 . λ x1 : ι → ο . prim0 (λ x2 . ∀ x3 . iff (prim1 x3 x2) (and (prim1 x3 x0) (x1 x3)))
Theorem 92823.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . iff (prim1 x2 (1216a.. x0 x1)) (and (prim1 x2 x0) (x1 x2)) (proof)
Theorem b2421.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0x1 x2prim1 x2 (1216a.. x0 x1) (proof)
Theorem 6982e.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)and (prim1 x2 x0) (x1 x2) (proof)
Theorem 492ff.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)∀ x3 : ο . (prim1 x2 x0x1 x2x3)x3 (proof)
Definition a4c2a.. := λ x0 . λ x1 : ι → ο . 94f9e.. (1216a.. x0 x1)
Theorem e951d.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . prim1 x3 x0x1 x3prim1 (x2 x3) (a4c2a.. x0 x1 x2) (proof)
Theorem ca584.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . prim1 x3 (a4c2a.. x0 x1 x2)∀ x4 : ο . (∀ x5 . and (prim1 x5 x0) (and (x1 x5) (x3 = x2 x5))x4)x4 (proof)
Theorem 932b3.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . prim1 x3 (a4c2a.. x0 x1 x2)∀ x4 : ο . (∀ x5 . prim1 x5 x0x1 x5x3 = x2 x5x4)x4 (proof)
Definition 3b429.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ο . λ x3 : ι → ι → ι . prim3 (94f9e.. x0 (λ x4 . a4c2a.. (x1 x4) (x2 x4) (x3 x4)))
Theorem 81c0c.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ι → ι . ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 (x1 x4)x2 x4 x5prim1 (x3 x4 x5) (3b429.. x0 x1 x2 x3) (proof)
Theorem 0cbcb.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ι → ι . ∀ x4 . prim1 x4 (3b429.. x0 x1 x2 x3)∀ x5 : ο . (∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 (x1 x6)x2 x6 x7x4 = x3 x6 x7x5)x5 (proof)
Theorem c4419.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ι → ι . ∀ x4 . prim1 x4 (3b429.. x0 x1 x2 x3)∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (∀ x7 : ο . (∀ x8 . and (prim1 x8 (x1 x6)) (and (x2 x6 x8) (x4 = x3 x6 x8))x7)x7)x5)x5 (proof)
Definition 85402.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . λ x3 : ι → ι → ι → ο . λ x4 : ι → ι → ι → ι . prim3 (94f9e.. x0 (λ x5 . 3b429.. (x1 x5) (x2 x5) (x3 x5) (x4 x5)))
Theorem abff8.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ο . ∀ x4 : ι → ι → ι → ι . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 (x1 x5)∀ x7 . prim1 x7 (x2 x5 x6)x3 x5 x6 x7prim1 (x4 x5 x6 x7) (85402.. x0 x1 x2 x3 x4) (proof)
Theorem 9b3dc.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ο . ∀ x4 : ι → ι → ι → ι . ∀ x5 . prim1 x5 (85402.. x0 x1 x2 x3 x4)∀ x6 : ο . (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 (x1 x7)∀ x9 . prim1 x9 (x2 x7 x8)x3 x7 x8 x9x5 = x4 x7 x8 x9x6)x6 (proof)
Theorem 7d382.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ο . ∀ x4 : ι → ι → ι → ι . ∀ x5 . prim1 x5 (85402.. x0 x1 x2 x3 x4)∀ x6 : ο . (∀ x7 . and (prim1 x7 x0) (∀ x8 : ο . (∀ x9 . and (prim1 x9 (x1 x7)) (∀ x10 : ο . (∀ x11 . and (prim1 x11 (x2 x7 x9)) (and (x3 x7 x9 x11) (x5 = x4 x7 x9 x11))x10)x10)x8)x8)x6)x6 (proof)
Definition f6efa.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . λ x3 : ι → ι → ι → ι . λ x4 : ι → ι → ι → ι → ο . λ x5 : ι → ι → ι → ι → ι . prim3 (94f9e.. x0 (λ x6 . 85402.. (x1 x6) (x2 x6) (x3 x6) (x4 x6) (x5 x6)))
Theorem 05e93.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ο . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 (x1 x6)∀ x8 . prim1 x8 (x2 x6 x7)∀ x9 . prim1 x9 (x3 x6 x7 x8)x4 x6 x7 x8 x9prim1 (x5 x6 x7 x8 x9) (f6efa.. x0 x1 x2 x3 x4 x5) (proof)
Theorem fd818.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ο . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . prim1 x6 (f6efa.. x0 x1 x2 x3 x4 x5)∀ x7 : ο . (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 (x1 x8)∀ x10 . prim1 x10 (x2 x8 x9)∀ x11 . prim1 x11 (x3 x8 x9 x10)x4 x8 x9 x10 x11x6 = x5 x8 x9 x10 x11x7)x7 (proof)
Theorem 5a2be.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ο . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . prim1 x6 (f6efa.. x0 x1 x2 x3 x4 x5)∀ x7 : ο . (∀ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 (x1 x8)) (∀ x11 : ο . (∀ x12 . and (prim1 x12 (x2 x8 x10)) (∀ x13 : ο . (∀ x14 . and (prim1 x14 (x3 x8 x10 x12)) (and (x4 x8 x10 x12 x14) (x6 = x5 x8 x10 x12 x14))x13)x13)x11)x11)x9)x9)x7)x7 (proof)
Definition 2aab0.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . λ x3 : ι → ι → ι → ι . λ x4 : ι → ι → ι → ι → ι . λ x5 : ι → ι → ι → ι → ι → ο . λ x6 : ι → ι → ι → ι → ι → ι . prim3 (94f9e.. x0 (λ x7 . f6efa.. (x1 x7) (x2 x7) (x3 x7) (x4 x7) (x5 x7) (x6 x7)))
Theorem d73e9.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ο . ∀ x6 : ι → ι → ι → ι → ι → ι . ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 (x1 x7)∀ x9 . prim1 x9 (x2 x7 x8)∀ x10 . prim1 x10 (x3 x7 x8 x9)∀ x11 . prim1 x11 (x4 x7 x8 x9 x10)x5 x7 x8 x9 x10 x11prim1 (x6 x7 x8 x9 x10 x11) (2aab0.. x0 x1 x2 x3 x4 x5 x6) (proof)
Theorem 7f213.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ο . ∀ x6 : ι → ι → ι → ι → ι → ι . ∀ x7 . prim1 x7 (2aab0.. x0 x1 x2 x3 x4 x5 x6)∀ x8 : ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 (x1 x9)∀ x11 . prim1 x11 (x2 x9 x10)∀ x12 . prim1 x12 (x3 x9 x10 x11)∀ x13 . prim1 x13 (x4 x9 x10 x11 x12)x5 x9 x10 x11 x12 x13x7 = x6 x9 x10 x11 x12 x13x8)x8 (proof)
Theorem 2e748.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ο . ∀ x6 : ι → ι → ι → ι → ι → ι . ∀ x7 . prim1 x7 (2aab0.. x0 x1 x2 x3 x4 x5 x6)∀ x8 : ο . (∀ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 (x1 x9)) (∀ x12 : ο . (∀ x13 . and (prim1 x13 (x2 x9 x11)) (∀ x14 : ο . (∀ x15 . and (prim1 x15 (x3 x9 x11 x13)) (∀ x16 : ο . (∀ x17 . and (prim1 x17 (x4 x9 x11 x13 x15)) (and (x5 x9 x11 x13 x15 x17) (x7 = x6 x9 x11 x13 x15 x17))x16)x16)x14)x14)x12)x12)x10)x10)x8)x8 (proof)
Definition 6cd44.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . λ x3 : ι → ι → ι → ι . λ x4 : ι → ι → ι → ι → ι . λ x5 : ι → ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ο . λ x7 : ι → ι → ι → ι → ι → ι → ι . prim3 (94f9e.. x0 (λ x8 . 2aab0.. (x1 x8) (x2 x8) (x3 x8) (x4 x8) (x5 x8) (x6 x8) (x7 x8)))
Theorem 803ff.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ο . ∀ x7 : ι → ι → ι → ι → ι → ι → ι . ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 (x1 x8)∀ x10 . prim1 x10 (x2 x8 x9)∀ x11 . prim1 x11 (x3 x8 x9 x10)∀ x12 . prim1 x12 (x4 x8 x9 x10 x11)∀ x13 . prim1 x13 (x5 x8 x9 x10 x11 x12)x6 x8 x9 x10 x11 x12 x13prim1 (x7 x8 x9 x10 x11 x12 x13) (6cd44.. x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Theorem 8029f.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ο . ∀ x7 : ι → ι → ι → ι → ι → ι → ι . ∀ x8 . prim1 x8 (6cd44.. x0 x1 x2 x3 x4 x5 x6 x7)∀ x9 : ο . (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 (x1 x10)∀ x12 . prim1 x12 (x2 x10 x11)∀ x13 . prim1 x13 (x3 x10 x11 x12)∀ x14 . prim1 x14 (x4 x10 x11 x12 x13)∀ x15 . prim1 x15 (x5 x10 x11 x12 x13 x14)x6 x10 x11 x12 x13 x14 x15x8 = x7 x10 x11 x12 x13 x14 x15x9)x9 (proof)
Theorem 2ffba.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ο . ∀ x7 : ι → ι → ι → ι → ι → ι → ι . ∀ x8 . prim1 x8 (6cd44.. x0 x1 x2 x3 x4 x5 x6 x7)∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 (x1 x10)) (∀ x13 : ο . (∀ x14 . and (prim1 x14 (x2 x10 x12)) (∀ x15 : ο . (∀ x16 . and (prim1 x16 (x3 x10 x12 x14)) (∀ x17 : ο . (∀ x18 . and (prim1 x18 (x4 x10 x12 x14 x16)) (∀ x19 : ο . (∀ x20 . and (prim1 x20 (x5 x10 x12 x14 x16 x18)) (and (x6 x10 x12 x14 x16 x18 x20) (x8 = x7 x10 x12 x14 x16 x18 x20))x19)x19)x17)x17)x15)x15)x13)x13)x11)x11)x9)x9 (proof)
Definition e5d4c.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . λ x3 : ι → ι → ι → ι . λ x4 : ι → ι → ι → ι → ι . λ x5 : ι → ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ο . λ x8 : ι → ι → ι → ι → ι → ι → ι → ι . prim3 (94f9e.. x0 (λ x9 . 6cd44.. (x1 x9) (x2 x9) (x3 x9) (x4 x9) (x5 x9) (x6 x9) (x7 x9) (x8 x9)))
Theorem 79851.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι → ι → ο . ∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι . ∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 (x1 x9)∀ x11 . prim1 x11 (x2 x9 x10)∀ x12 . prim1 x12 (x3 x9 x10 x11)∀ x13 . prim1 x13 (x4 x9 x10 x11 x12)∀ x14 . prim1 x14 (x5 x9 x10 x11 x12 x13)∀ x15 . prim1 x15 (x6 x9 x10 x11 x12 x13 x14)x7 x9 x10 x11 x12 x13 x14 x15prim1 (x8 x9 x10 x11 x12 x13 x14 x15) (e5d4c.. x0 x1 x2 x3 x4 x5 x6 x7 x8) (proof)
Theorem 48be8.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι → ι → ο . ∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι . ∀ x9 . prim1 x9 (e5d4c.. x0 x1 x2 x3 x4 x5 x6 x7 x8)∀ x10 : ο . (∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 (x1 x11)∀ x13 . prim1 x13 (x2 x11 x12)∀ x14 . prim1 x14 (x3 x11 x12 x13)∀ x15 . prim1 x15 (x4 x11 x12 x13 x14)∀ x16 . prim1 x16 (x5 x11 x12 x13 x14 x15)∀ x17 . prim1 x17 (x6 x11 x12 x13 x14 x15 x16)x7 x11 x12 x13 x14 x15 x16 x17x9 = x8 x11 x12 x13 x14 x15 x16 x17x10)x10 (proof)
Theorem fb4aa.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ι → ι . ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι → ι → ο . ∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι . ∀ x9 . prim1 x9 (e5d4c.. x0 x1 x2 x3 x4 x5 x6 x7 x8)∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 (x1 x11)) (∀ x14 : ο . (∀ x15 . and (prim1 x15 (x2 x11 x13)) (∀ x16 : ο . (∀ x17 . and (prim1 x17 (x3 x11 x13 x15)) (∀ x18 : ο . (∀ x19 . and (prim1 x19 (x4 x11 x13 x15 x17)) (∀ x20 : ο . (∀ x21 . and (prim1 x21 (x5 x11 x13 x15 x17 x19)) (∀ x22 : ο . (∀ x23 . and (prim1 x23 (x6 x11 x13 x15 x17 x19 x21)) (and (x7 x11 x13 x15 x17 x19 x21 x23) (x9 = x8 x11 x13 x15 x17 x19 x21 x23))x22)x22)x20)x20)x18)x18)x16)x16)x14)x14)x12)x12)x10)x10 (proof)
Definition f8922.. := λ x0 : (ι → ι) → ο . ∀ x1 : (ι → ι) → ι . ∀ x2 : ο . (∀ x3 . (∀ x4 : ι → ι . x0 x4x4 x3 = x1 x4)x2)x2
Theorem 674bb.. : ∀ x0 x1 : (ι → ι) → ο . f8922.. x1(∀ x2 : ι → ι . x0 x2x1 x2)f8922.. x0 (proof)
Definition fa4ab.. := λ x0 : (ι → ι) → ο . λ x1 : (ι → ι) → ι . prim0 (λ x2 . ∀ x3 : ι → ι . x0 x3x3 x2 = x1 x3)
Theorem 0f560.. : ∀ x0 : (ι → ι) → ο . f8922.. x0∀ x1 : ι → ι . x0 x1∀ x2 : (ι → ι) → ι . x1 (fa4ab.. x0 x2) = x2 x1 (proof)
Definition e8533.. := λ x0 : (ι → ι) → ο . λ x1 . x1 = fa4ab.. x0 (λ x3 : ι → ι . x3 x1)
Theorem a4074.. : ∀ x0 : (ι → ι) → ο . f8922.. x0∀ x1 . fa4ab.. x0 (λ x3 : ι → ι . x3 x1) = fa4ab.. x0 (λ x3 : ι → ι . x3 (fa4ab.. x0 (λ x4 : ι → ι . x4 x1))) (proof)
Theorem 5bcd7.. : ∀ x0 : (ι → ι) → ο . f8922.. x0∀ x1 . e8533.. x0 (fa4ab.. x0 (λ x2 : ι → ι . x2 x1)) (proof)
Definition cdba9.. := λ x0 : (ι → ι) → ο . λ x1 x2 . ∀ x3 : ι → ι . x0 x3x3 x1 = x3 x2
Theorem 3c94a.. : ∀ x0 : (ι → ι) → ο . ∀ x1 . cdba9.. x0 x1 x1 (proof)
Theorem b8753.. : ∀ x0 : (ι → ι) → ο . ∀ x1 x2 . cdba9.. x0 x1 x2cdba9.. x0 x2 x1 (proof)
Theorem 43dff.. : ∀ x0 : (ι → ι) → ο . ∀ x1 x2 x3 . cdba9.. x0 x1 x2cdba9.. x0 x2 x3cdba9.. x0 x1 x3 (proof)
Definition 7bebd.. := λ x0 : ι → ι . λ x1 . True
Definition 5eb06.. := λ x0 : ι → ι . λ x1 . and (7bebd.. x0 x1) (e8533.. (λ x2 : ι → ι . x2 = x0) x1)
Definition cde91.. := λ x0 : ι → ι . λ x1 . ∀ x2 . nIn x2 (x0 x1)
Definition 52b09.. := λ x0 : ι → ι . λ x1 . not (cde91.. x0 x1)
Definition 9a7b4.. := λ x0 x1 : ι → ι . λ x2 . prim1 (x1 x2) (x0 x2)
Definition 1ba2d.. := λ x0 x1 : ι → ι . λ x2 . and (9a7b4.. x0 x1 x2) (e8533.. (λ x3 : ι → ι . or (x3 = x0) (x3 = x1)) x2)
Definition fa71f.. := λ x0 x1 x2 : ι → ι . λ x3 . and (9a7b4.. x0 x1 x3) (9a7b4.. x0 x2 x3)
Definition 3c39d.. := λ x0 x1 x2 : ι → ι . λ x3 . and (fa71f.. x0 x1 x2 x3) (e8533.. (λ x4 : ι → ι . or (or (x4 = x0) (x4 = x1)) (x4 = x2)) x3)
Theorem 500f6.. : ∀ x0 x1 : ι → ι . not (x0 = x1)f8922.. (λ x2 : ι → ι . or (x2 = x0) (x2 = x1))∀ x2 . 9a7b4.. x0 x1 x27bebd.. x0 x2 (proof)
Theorem 500f6.. : ∀ x0 x1 : ι → ι . not (x0 = x1)f8922.. (λ x2 : ι → ι . or (x2 = x0) (x2 = x1))∀ x2 . 9a7b4.. x0 x1 x27bebd.. x0 x2 (proof)
Theorem ea617.. : ∀ x0 x1 x2 : ι → ι . not (x0 = x1)not (x0 = x2)not (x1 = x2)f8922.. (λ x3 : ι → ι . or (or (x3 = x0) (x3 = x1)) (x3 = x2))∀ x3 . fa71f.. x0 x1 x2 x39a7b4.. x0 x1 x3 (proof)
Theorem e5856.. : ∀ x0 x1 x2 : ι → ι . not (x0 = x1)not (x0 = x2)not (x1 = x2)f8922.. (λ x3 : ι → ι . or (or (x3 = x0) (x3 = x1)) (x3 = x2))∀ x3 . fa71f.. x0 x1 x2 x39a7b4.. x0 x2 x3 (proof)
Definition 6ce64.. := λ x0 x1 : ι → ι . λ x2 . True
Definition 17176.. := λ x0 x1 : ι → ι . λ x2 . and (6ce64.. x0 x1 x2) (e8533.. (λ x3 : ι → ι . or (x3 = x0) (x3 = x1)) x2)