Search for blocks/addresses/...
Proofgold Asset
asset id
8ce4af77c51d6ec5c368457b2070c6c6cdad67c9db1d13fc90c93f85bbd9274a
asset hash
3ec0f9bfb7d9283af24fdcec997f8436dc3b7ab68f95524206442c7e65ef3dc3
bday / block
36563
tx
6b4bf..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
f8709..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
16c0f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
5c2af..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
87273..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
5c2af..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
182cc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
2cfca..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
182cc..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
0788d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
2cfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
251ab..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
0788d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
2de86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
36d58..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d2827..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
36d58..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
58208..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
d2827..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
c13a7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
58208..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
bdc7f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
87273..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
39c17..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
5c2af..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
d0a24..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
39c17..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
496a0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
5c2af..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
0d539..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
496a0..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
796c4..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d7cce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
796c4..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
f7902..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
d7cce..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
788a1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
f7902..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
21422..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
f0d5b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
21422..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
8f55d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
f0d5b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
48a69..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8f55d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
3a674..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
c480f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
3a674..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
53762..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
c480f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
60df6..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
e8ba7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
60df6..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
08d9f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
e8ba7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
79f22..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
796c4..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
ceccf..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
79f22..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
c3712..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ceccf..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
63d77..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
87273..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
x13
)
⟶
x13
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
51a01..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
8b6ad..
x1
x2
x3
x4
x5
⟶
8b6ad..
x1
x4
x5
x2
x3
Known
a1eb5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
87273..
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
87273..
x1
x9
x6
x8
x7
x3
x5
x4
x2
x10
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
fef0d..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
87273..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
251ab..
x2
x14
x15
x16
x17
x18
x19
x3
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
c13a7..
x2
x3
x14
x15
x16
x17
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
bdc7f..
x2
x14
x15
x16
x17
x18
x19
x20
x21
x22
x3
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
d0a24..
x2
x14
x15
x16
x17
x3
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
d0a24..
x2
x14
x15
x16
x17
x18
x19
x20
x21
x3
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
0d539..
x2
x14
x15
x16
x17
x3
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
0d539..
x2
x14
x15
x16
x17
x18
x19
x20
x21
x3
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
788a1..
x2
x14
x3
x15
x16
x17
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
48a69..
x2
x14
x3
x15
x16
x17
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
53762..
x2
x14
x15
x16
x17
x3
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
08d9f..
x2
x14
x15
x16
x17
x3
x18
x19
x20
x21
x22
⟶
x13
)
⟶
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
c3712..
x2
x14
x3
x15
x16
x17
x18
x19
x20
x21
x22
⟶
x13
)
⟶
x13
(proof)