Search for blocks/addresses/...
Proofgold Asset
asset id
32d07ed52820d028686428dc253c24468b01ca1e9e79a6118c96d59ad367bb8e
asset hash
8d968ac11df79c036e2794c0f024502196e1aaf1f16287058c3fd23a97ffa9b8
bday / block
20801
tx
707bf..
preasset
doc published by
Pr4zB..
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
In2_lexicographic
:=
λ x0 x1 x2 x3 .
or
(
x1
∈
x3
)
(
and
(
x1
=
x3
)
(
x0
∈
x2
)
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
94e96..
:
∀ x0 x1 .
not
(
In2_lexicographic
x0
x1
x0
x1
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
65c2b..
:
∀ x0 x1 x2 x3 x4 x5 .
TransSet
x4
⟶
TransSet
x5
⟶
In2_lexicographic
x0
x1
x2
x3
⟶
In2_lexicographic
x2
x3
x4
x5
⟶
In2_lexicographic
x0
x1
x4
x5
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Param
TwoRamseyGraph_4_6_35_a
:
ι
→
ι
→
ι
→
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
dd650..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
TwoRamseyGraph_4_6_35_a
x0
x1
x0
x1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_6
nat_6
:
nat_p
6
Theorem
67627..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
not
(
TwoRamseyGraph_4_6_35_a
x0
x1
x2
x3
)
⟶
or
(
In2_lexicographic
x0
x1
x2
x3
)
(
In2_lexicographic
x2
x3
x0
x1
)
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
e709e..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
0
x1
u1
(proof)
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
0d8f3..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
0
x1
u2
(proof)
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
b8306..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u1
x1
u2
(proof)
Known
In_0_3
In_0_3
:
0
∈
3
Theorem
27f34..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
0
x1
u3
(proof)
Known
In_1_3
In_1_3
:
1
∈
3
Theorem
36690..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u1
x1
u3
(proof)
Known
In_2_3
In_2_3
:
2
∈
3
Theorem
27a87..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u2
x1
u3
(proof)
Known
In_0_4
In_0_4
:
0
∈
4
Theorem
3f697..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
0
x1
u4
(proof)
Known
In_1_4
In_1_4
:
1
∈
4
Theorem
be5f9..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u1
x1
u4
(proof)
Known
In_2_4
In_2_4
:
2
∈
4
Theorem
952f7..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u2
x1
u4
(proof)
Known
In_3_4
In_3_4
:
3
∈
4
Theorem
e60e7..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u3
x1
u4
(proof)
Known
In_0_5
In_0_5
:
0
∈
5
Theorem
03171..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
0
x1
u5
(proof)
Known
In_1_5
In_1_5
:
1
∈
5
Theorem
9750a..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u1
x1
u5
(proof)
Known
In_2_5
In_2_5
:
2
∈
5
Theorem
f1e9b..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u2
x1
u5
(proof)
Known
In_3_5
In_3_5
:
3
∈
5
Theorem
b30df..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u3
x1
u5
(proof)
Known
In_4_5
In_4_5
:
4
∈
5
Theorem
035bb..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
In2_lexicographic
x0
u4
x1
u5
(proof)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Theorem
6f0f0..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u1
x1
0
)
(proof)
Theorem
1b2aa..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u2
x1
0
)
(proof)
Theorem
829cc..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u3
x1
0
)
(proof)
Theorem
1c740..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u4
x1
0
)
(proof)
Theorem
196b9..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u5
x1
0
)
(proof)
Theorem
97a37..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u2
x1
u1
)
(proof)
Theorem
b27e1..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u3
x1
u1
)
(proof)
Theorem
52c59..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u4
x1
u1
)
(proof)
Theorem
2efb1..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u5
x1
u1
)
(proof)
Theorem
696a1..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u3
x1
u2
)
(proof)
Theorem
dd794..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u4
x1
u2
)
(proof)
Theorem
dd382..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u5
x1
u2
)
(proof)
Theorem
ffa46..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u4
x1
u3
)
(proof)
Theorem
e28f6..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u5
x1
u3
)
(proof)
Theorem
1f4d3..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
not
(
In2_lexicographic
x0
u5
x1
u4
)
(proof)
Theorem
0b098..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
0
x0
u1
x0
(proof)
Theorem
5e815..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
0
x0
u2
x0
(proof)
Theorem
6bdbd..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u1
x0
u2
x0
(proof)
Theorem
0b5bd..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
0
x0
u3
x0
(proof)
Theorem
d2a78..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u1
x0
u3
x0
(proof)
Theorem
07268..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u2
x0
u3
x0
(proof)
Theorem
e04f2..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
0
x0
u4
x0
(proof)
Theorem
e1002..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u1
x0
u4
x0
(proof)
Theorem
58234..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u2
x0
u4
x0
(proof)
Theorem
b7796..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u3
x0
u4
x0
(proof)
Theorem
6fa01..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
0
x0
u5
x0
(proof)
Theorem
740f5..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u1
x0
u5
x0
(proof)
Theorem
90d47..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u2
x0
u5
x0
(proof)
Theorem
0a7a8..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u3
x0
u5
x0
(proof)
Theorem
bb6fa..
:
∀ x0 .
x0
∈
u6
⟶
In2_lexicographic
u4
x0
u5
x0
(proof)
Theorem
b5ca8..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
0
x0
0
x0
)
(proof)
Theorem
15042..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u1
x0
0
x0
)
(proof)
Theorem
4ed6e..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u2
x0
0
x0
)
(proof)
Theorem
aa680..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u3
x0
0
x0
)
(proof)
Theorem
be2c5..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u4
x0
0
x0
)
(proof)
Theorem
fb400..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
0
x0
)
(proof)
Theorem
69e13..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u1
x0
u1
x0
)
(proof)
Theorem
b695a..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u2
x0
u1
x0
)
(proof)
Theorem
e7d59..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u3
x0
u1
x0
)
(proof)
Theorem
a3e6e..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u4
x0
u1
x0
)
(proof)
Theorem
dadcc..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
u1
x0
)
(proof)
Theorem
05e9c..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u2
x0
u2
x0
)
(proof)
Theorem
a73b8..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u3
x0
u2
x0
)
(proof)
Theorem
b6f90..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u4
x0
u2
x0
)
(proof)
Theorem
6bc25..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
u2
x0
)
(proof)
Theorem
52f87..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u3
x0
u3
x0
)
(proof)
Theorem
dc51f..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u4
x0
u3
x0
)
(proof)
Theorem
447d5..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
u3
x0
)
(proof)
Theorem
a58bd..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u4
x0
u4
x0
)
(proof)
Theorem
2313b..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
u4
x0
)
(proof)
Theorem
56b5c..
:
∀ x0 .
x0
∈
u6
⟶
not
(
In2_lexicographic
u5
x0
u5
x0
)
(proof)