Search for blocks/addresses/...
Proofgold Asset
asset id
8e6c51793070f922487e23c175b5b6b846538abad6dc04dbe6c4f31b7b10a822
asset hash
55de1458221a2a8316f81442307a03b80aa0319a90514f876035b9ea59ee132f
bday / block
35131
tx
8e9e8..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
d8d89..
:
∀ x0 x1 :
ι → ο
.
∀ x2 :
ι →
ι →
ι →
ι → ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
∀ x6 .
∀ x7 :
ι → ο
.
∀ x8 :
ι → ι
.
∀ x9 x10 :
ι → ο
.
∀ x11 x12 :
ι → ι
.
∀ x13 .
∀ x14 :
ι →
ι →
ι →
ι → ι
.
∀ x15 :
ι →
ι → ο
.
∀ x16 x17 x18 x19 x20 .
∀ x21 :
ι →
ι → ι
.
∀ x22 .
∀ x23 :
ι → ι
.
∀ x24 x25 :
ι → ο
.
∀ x26 x27 :
ι →
ι →
ι → ι
.
∀ x28 .
∀ x29 :
ι →
ι → ο
.
∀ x30 :
ι → ι
.
∀ x31 :
ι →
ι → ο
.
∀ x32 :
ι → ο
.
(
∀ x33 x34 .
x32
x34
⟶
(
x34
=
x33
⟶
False
)
⟶
x32
x33
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 x38 .
(
x0
x38
⟶
False
)
⟶
x5
x38
⟶
x1
x38
⟶
x3
x33
(
x4
x38
)
⟶
x3
x37
(
x4
x38
)
⟶
x3
x34
(
x4
x38
)
⟶
x3
x36
(
x4
x38
)
⟶
x3
x35
(
x4
x38
)
⟶
x2
x38
x33
x37
x34
⟶
x2
x38
x33
x37
x36
⟶
x2
x38
x33
x37
x35
⟶
(
x33
=
x37
⟶
False
)
⟶
(
x2
x38
x34
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x31
x33
x34
⟶
x32
x34
⟶
False
)
⟶
(
∀ x33 .
x32
x33
⟶
(
x33
=
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x31
x33
x34
⟶
x3
x34
(
x30
x35
)
⟶
x32
x35
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x31
x34
x35
⟶
x3
x35
(
x30
x33
)
⟶
(
x3
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x29
x34
x33
⟶
(
x3
x34
(
x30
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x3
x34
(
x30
x33
)
⟶
(
x29
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x3
x33
x34
⟶
(
x32
x34
⟶
False
)
⟶
(
x31
x33
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x31
x34
x33
⟶
(
x3
x34
x33
⟶
False
)
⟶
False
)
⟶
(
x32
x28
⟶
False
)
⟶
(
∀ x33 .
(
x29
x33
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x0
x35
⟶
False
)
⟶
x5
x35
⟶
x1
x35
⟶
x3
x33
(
x4
x35
)
⟶
x3
x34
(
x4
x35
)
⟶
(
x27
x35
x33
x34
=
x26
x35
x33
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
x32
(
x8
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
(
x3
(
x8
x33
)
(
x30
(
x4
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x0
x33
⟶
False
)
⟶
x9
x33
⟶
x10
(
x11
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x0
x33
⟶
False
)
⟶
x9
x33
⟶
(
x3
(
x11
x33
)
(
x30
(
x4
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
(
x10
(
x12
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
x32
(
x12
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
(
x3
(
x12
x33
)
(
x30
(
x4
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x25
x33
⟶
False
)
⟶
x9
x33
⟶
x24
(
x4
x33
)
⟶
False
)
⟶
(
∀ x33 .
x25
x33
⟶
x9
x33
⟶
(
x24
(
x4
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x0
x33
⟶
x9
x33
⟶
(
x10
(
x4
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x0
x33
⟶
False
)
⟶
x9
x33
⟶
x10
(
x4
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x7
x33
⟶
False
)
⟶
x9
x33
⟶
x32
(
x4
x33
)
⟶
False
)
⟶
(
∀ x33 .
x7
x33
⟶
x9
x33
⟶
(
x32
(
x4
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x3
(
x23
x33
)
x33
⟶
False
)
⟶
False
)
⟶
(
(
x9
x13
⟶
False
)
⟶
False
)
⟶
(
(
x1
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x1
x33
⟶
(
x9
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x0
x35
⟶
False
)
⟶
x5
x35
⟶
x1
x35
⟶
x3
x33
(
x4
x35
)
⟶
x3
x34
(
x4
x35
)
⟶
(
x3
(
x27
x35
x33
x34
)
(
x30
(
x4
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x0
x35
⟶
False
)
⟶
x5
x35
⟶
x1
x35
⟶
x3
x33
(
x4
x35
)
⟶
x3
x34
(
x4
x35
)
⟶
(
x3
(
x26
x35
x33
x34
)
(
x30
(
x4
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x31
(
x21
x33
x34
)
x33
⟶
(
x29
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
(
x31
(
x21
x33
x34
)
x34
⟶
False
)
⟶
(
x29
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x29
x34
x35
⟶
x31
x33
x34
⟶
(
x31
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x0
x36
⟶
False
)
⟶
x5
x36
⟶
x1
x36
⟶
x3
x33
(
x4
x36
)
⟶
x3
x35
(
x4
x36
)
⟶
x3
x34
(
x30
(
x4
x36
)
)
⟶
(
x2
x36
x33
x35
(
x14
x34
x35
x33
x36
)
⟶
False
)
⟶
(
x31
(
x14
x34
x35
x33
x36
)
x34
⟶
False
)
⟶
(
x34
=
x26
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x0
x36
⟶
False
)
⟶
x5
x36
⟶
x1
x36
⟶
x3
x33
(
x4
x36
)
⟶
x3
x35
(
x4
x36
)
⟶
x3
x34
(
x30
(
x4
x36
)
)
⟶
x31
(
x14
x34
x35
x33
x36
)
x34
⟶
x2
x36
x33
x35
(
x14
x34
x35
x33
x36
)
⟶
(
x34
=
x26
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x0
x36
⟶
False
)
⟶
x5
x36
⟶
x1
x36
⟶
x3
x33
(
x4
x36
)
⟶
x3
x35
(
x4
x36
)
⟶
x3
x34
(
x30
(
x4
x36
)
)
⟶
(
x3
(
x14
x34
x35
x33
x36
)
(
x4
x36
)
⟶
False
)
⟶
(
x34
=
x26
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 .
(
x0
x37
⟶
False
)
⟶
x5
x37
⟶
x1
x37
⟶
x3
x33
(
x4
x37
)
⟶
x3
x36
(
x4
x37
)
⟶
x3
x34
(
x30
(
x4
x37
)
)
⟶
x34
=
x26
x37
x33
x36
⟶
x3
x35
(
x4
x37
)
⟶
x2
x37
x33
x36
x35
⟶
(
x31
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 .
(
x0
x37
⟶
False
)
⟶
x5
x37
⟶
x1
x37
⟶
x3
x33
(
x4
x37
)
⟶
x3
x36
(
x4
x37
)
⟶
x3
x34
(
x30
(
x4
x37
)
)
⟶
x34
=
x26
x37
x33
x36
⟶
x3
x35
(
x4
x37
)
⟶
x31
x35
x34
⟶
(
x2
x37
x33
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x0
x35
⟶
False
)
⟶
x5
x35
⟶
x1
x35
⟶
x3
x33
(
x4
x35
)
⟶
x3
x34
(
x4
x35
)
⟶
(
x27
x35
x33
x34
=
x27
x35
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x15
x33
x6
⟶
(
x7
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x7
x33
⟶
(
x15
x33
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x25
x33
⟶
False
)
⟶
x0
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x0
x33
⟶
(
x25
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x25
x33
⟶
False
)
⟶
x25
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x25
x33
⟶
False
)
⟶
x7
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x7
x33
⟶
(
x25
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x7
x33
⟶
(
x7
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x0
x33
⟶
False
)
⟶
x7
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x7
x33
⟶
(
x0
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x0
x33
⟶
False
)
⟶
x7
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x15
x33
x28
⟶
(
x0
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x15
x33
x28
⟶
x7
x33
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
(
x7
x33
⟶
False
)
⟶
x0
x33
⟶
(
x15
x33
x28
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x31
x33
x34
⟶
x31
x34
x33
⟶
False
)
⟶
(
x29
(
x27
x20
x17
x16
)
(
x27
x20
x19
x18
)
⟶
False
)
⟶
(
x17
=
x16
⟶
False
)
⟶
(
(
x31
x18
(
x27
x20
x17
x16
)
⟶
False
)
⟶
False
)
⟶
(
(
x31
x19
(
x27
x20
x17
x16
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
(
x4
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x16
(
x4
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x17
(
x4
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x19
(
x4
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x1
x20
⟶
False
)
⟶
False
)
⟶
(
(
x5
x20
⟶
False
)
⟶
False
)
⟶
(
x0
x20
⟶
False
)
⟶
False
(proof)