Search for blocks/addresses/...
Proofgold Asset
asset id
90c8b889d89502762e8794987d637c9d378871a7fdc2fffc94fdc573245d0782
asset hash
421ed8ff5898347f169ef8c2719e950bcb415917b52617c7d56ace929754e832
bday / block
18451
tx
cec42..
preasset
doc published by
Pr4zB..
Definition
ChurchNum_3ary_proj_p
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x2
)
⟶
x1
(
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x3
)
⟶
x1
(
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
x1
x0
Definition
ChurchNum_8ary_proj_p
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 :
(
ι → ι
)
→
ι → ι
.
x9
)
⟶
x1
x0
Definition
ChurchNums_8x3_to_3_lt7_id_ge7_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
Definition
ChurchNums_8_perm_4_5_6_7_0_1_2_3
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x5
x6
x7
x8
x1
x2
x3
x4
Definition
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Definition
ChurchNums_8x3_to_3_lt3_id_ge3_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Theorem
b5b24..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_8ary_proj_p
x1
⟶
ChurchNums_8x3_to_3_lt7_id_ge7_rot2
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x1
)
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x1
x0
)
=
ChurchNums_8x3_to_3_lt3_id_ge3_rot2
x1
x0
(proof)
Param
TwoRamseyGraph_4_5_24_ChurchNums_3x8
:
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
(
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
(
(
ι
→
ι
) →
ι
→
ι
) →
CN (
ι
→
ι
)
) →
ι
→
ι
→
ι
Definition
ChurchNums_8_perm_5_6_7_0_1_2_3_4
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x6
x7
x8
x1
x2
x3
x4
x5
Known
1bd40..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x2
x0
)
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x2
)
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x3
x1
)
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x3
)
Definition
ChurchNums_8_perm_1_2_3_4_5_6_7_0
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x2
x3
x4
x5
x6
x7
x8
x1
Known
eb832..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_to_3_lt7_id_ge7_rot2
x2
x0
)
(
ChurchNums_8_perm_1_2_3_4_5_6_7_0
x2
)
(
ChurchNums_8x3_to_3_lt7_id_ge7_rot2
x3
x1
)
(
ChurchNums_8_perm_1_2_3_4_5_6_7_0
x3
)
Known
dac10..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_8ary_proj_p
x0
⟶
ChurchNum_8ary_proj_p
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x0
)
Known
24233..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_8ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_3ary_proj_p
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x0
x1
)
Theorem
693c5..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_to_3_lt3_id_ge3_rot2
x2
x0
)
(
ChurchNums_8_perm_5_6_7_0_1_2_3_4
x2
)
(
ChurchNums_8x3_to_3_lt3_id_ge3_rot2
x3
x1
)
(
ChurchNums_8_perm_5_6_7_0_1_2_3_4
x3
)
(proof)
Definition
ChurchNums_8x3_to_3_lt6_id_ge6_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Definition
ChurchNums_8x3_lt2_id_ge2_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Theorem
6a88b..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_8ary_proj_p
x1
⟶
ChurchNums_8x3_to_3_lt6_id_ge6_rot2
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x1
)
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x1
x0
)
=
ChurchNums_8x3_lt2_id_ge2_rot2
x1
x0
(proof)
Definition
ChurchNums_8_perm_6_7_0_1_2_3_4_5
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x7
x8
x1
x2
x3
x4
x5
x6
Definition
ChurchNums_8_perm_2_3_4_5_6_7_0_1
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x3
x4
x5
x6
x7
x8
x1
x2
Known
1928f..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_to_3_lt6_id_ge6_rot2
x2
x0
)
(
ChurchNums_8_perm_2_3_4_5_6_7_0_1
x2
)
(
ChurchNums_8x3_to_3_lt6_id_ge6_rot2
x3
x1
)
(
ChurchNums_8_perm_2_3_4_5_6_7_0_1
x3
)
Theorem
a486a..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_lt2_id_ge2_rot2
x2
x0
)
(
ChurchNums_8_perm_6_7_0_1_2_3_4_5
x2
)
(
ChurchNums_8x3_lt2_id_ge2_rot2
x3
x1
)
(
ChurchNums_8_perm_6_7_0_1_2_3_4_5
x3
)
(proof)
Definition
ChurchNums_8x3_to_3_lt5_id_ge5_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Definition
ChurchNums_8x3_lt1_id_ge1_rot2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x2 x3 x4 :
(
ι → ι
)
→
ι → ι
.
x0
(
x1
x2
x3
x4
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
(
x1
x3
x4
x2
)
Theorem
f809a..
:
∀ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_8ary_proj_p
x1
⟶
ChurchNums_8x3_to_3_lt5_id_ge5_rot2
(
ChurchNums_8_perm_4_5_6_7_0_1_2_3
x1
)
(
ChurchNums_8x3_to_3_lt4_id_ge4_rot2
x1
x0
)
=
ChurchNums_8x3_lt1_id_ge1_rot2
x1
x0
(proof)
Definition
ChurchNums_8_perm_7_0_1_2_3_4_5_6
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x8
x1
x2
x3
x4
x5
x6
x7
Definition
ChurchNums_8_perm_3_4_5_6_7_0_1_2
:=
λ x0 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 :
(
ι → ι
)
→
ι → ι
.
x0
x4
x5
x6
x7
x8
x1
x2
x3
Known
84d56..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_to_3_lt5_id_ge5_rot2
x2
x0
)
(
ChurchNums_8_perm_3_4_5_6_7_0_1_2
x2
)
(
ChurchNums_8x3_to_3_lt5_id_ge5_rot2
x3
x1
)
(
ChurchNums_8_perm_3_4_5_6_7_0_1_2
x3
)
Theorem
71c84..
:
∀ x0 x1 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x2 x3 :
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
(
ι → ι
)
→
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
ChurchNum_3ary_proj_p
x0
⟶
ChurchNum_3ary_proj_p
x1
⟶
ChurchNum_8ary_proj_p
x2
⟶
ChurchNum_8ary_proj_p
x3
⟶
TwoRamseyGraph_4_5_24_ChurchNums_3x8
x0
x2
x1
x3
=
TwoRamseyGraph_4_5_24_ChurchNums_3x8
(
ChurchNums_8x3_lt1_id_ge1_rot2
x2
x0
)
(
ChurchNums_8_perm_7_0_1_2_3_4_5_6
x2
)
(
ChurchNums_8x3_lt1_id_ge1_rot2
x3
x1
)
(
ChurchNums_8_perm_7_0_1_2_3_4_5_6
x3
)
(proof)