Search for blocks/addresses/...

Proofgold Asset

asset id
91191fcfd254124abf082f894e8b06112ad0c94f72ee288b0458688fbbe9395b
asset hash
adec5ed51becf85aeddc425294bff78984518cb114759be53068385c1a082583
bday / block
12548
tx
7d348..
preasset
doc published by PrGxv..
Param omegaomega : ι
Param mul_SNomul_SNo : ιιι
Param eps_eps_ : ιι
Param add_SNoadd_SNo : ιιι
Known mul_SNo_eps_eps_add_SNomul_SNo_eps_eps_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo (eps_ x0) (eps_ x1) = eps_ (add_SNo x0 x1)
Param SNoSNo : ιο
Known mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Param nat_pnat_p : ιο
Param exp_SNo_natexp_SNo_nat : ιιι
Known nat_exp_SNo_natnat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1)
Param ordsuccordsucc : ιι
Known mul_SNo_eps_power_2mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1
Param binunionbinunion : ιιι
Param minus_SNominus_SNo : ιι
Definition intint := binunion omega (prim5 omega minus_SNo)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem int_SNo_casesint_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1intx0 x1 (proof)
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem int_SNoint_SNo : ∀ x0 . x0intSNo x0 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Theorem Subq_omega_intSubq_omega_int : omegaint (proof)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem int_minus_SNo_omegaint_minus_SNo_omega : ∀ x0 . x0omegaminus_SNo x0int (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Param ordinalordinal : ιο
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known ordinal_ordsucc_SNo_eqordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known SNo_1SNo_1 : SNo 1
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Theorem int_add_SNo_lemint_add_SNo_lem : ∀ x0 . x0omega∀ x1 . nat_p x1add_SNo (minus_SNo x0) x1int (proof)
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Theorem int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int (proof)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int (proof)
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem int_mul_SNoint_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int (proof)
Param SNoS_SNoS_ : ιι
Known nonneg_diadic_rational_p_SNoS_omeganonneg_diadic_rational_p_SNoS_omega : ∀ x0 . x0omega∀ x1 . nat_p x1mul_SNo (eps_ x0) x1SNoS_ omega
Definition diadic_rational_pdiadic_rational_p := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (x4int) (x0 = mul_SNo (eps_ x2) x4)x3)x3)x1)x1
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Theorem diadic_rational_p_SNoS_omegadiadic_rational_p_SNoS_omega : ∀ x0 . diadic_rational_p x0x0SNoS_ omega (proof)
Param SNoLevSNoLev : ιι
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Theorem 418cf.. : ∀ x0 . diadic_rational_p x0SNo x0 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known nat_0nat_0 : nat_p 0
Known eps_0_1eps_0_1 : eps_ 0 = 1
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Theorem int_diadic_rational_pint_diadic_rational_p : ∀ x0 . x0intdiadic_rational_p x0 (proof)
Theorem omega_diadic_rational_pomega_diadic_rational_p : ∀ x0 . x0omegadiadic_rational_p x0 (proof)
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Theorem eps_diadic_rational_peps_diadic_rational_p : ∀ x0 . x0omegadiadic_rational_p (eps_ x0) (proof)
Theorem minus_SNo_diadic_rational_pminus_SNo_diadic_rational_p : ∀ x0 . diadic_rational_p x0diadic_rational_p (minus_SNo x0) (proof)
Theorem mul_SNo_diadic_rational_pmul_SNo_diadic_rational_p : ∀ x0 x1 . diadic_rational_p x0diadic_rational_p x1diadic_rational_p (mul_SNo x0 x1) (proof)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known nat_2nat_2 : nat_p 2
Theorem add_SNo_diadic_rational_padd_SNo_diadic_rational_p : ∀ x0 x1 . diadic_rational_p x0diadic_rational_p x1diadic_rational_p (add_SNo x0 x1) (proof)
Param SNoLeSNoLe : ιιο
Definition SNo_max_ofSNo_max_of := λ x0 x1 . and (and (x1x0) (SNo x1)) (∀ x2 . x2x0SNo x2SNoLe x2 x1)
Definition SNo_min_ofSNo_min_of := λ x0 x1 . and (and (x1x0) (SNo x1)) (∀ x2 . x2x0SNo x2SNoLe x1 x2)
Param SNoLSNoL : ιι
Known SNoS_omega_SNoL_max_existsSNoS_omega_SNoL_max_exists : ∀ x0 . x0SNoS_ omegaor (SNoL x0 = 0) (∀ x1 : ο . (∀ x2 . SNo_max_of (SNoL x0) x2x1)x1)
Param SNoRSNoR : ιι
Known SNoS_omega_SNoR_min_existsSNoS_omega_SNoR_min_exists : ∀ x0 . x0SNoS_ omegaor (SNoR x0 = 0) (∀ x1 : ο . (∀ x2 . SNo_min_of (SNoR x0) x2x1)x1)
Param SNoLtSNoLt : ιιο
Known double_SNo_min_1double_SNo_min_1 : ∀ x0 x1 . SNo x0SNo_min_of (SNoR x0) x1∀ x2 . SNo x2SNoLt x2 x0SNoLt (add_SNo x0 x0) (add_SNo x1 x2)∀ x3 : ο . (∀ x4 . and (x4SNoL x2) (add_SNo x1 x4 = add_SNo x0 x0)x3)x3
Known double_SNo_max_1double_SNo_max_1 : ∀ x0 x1 . SNo x0SNo_max_of (SNoL x0) x1∀ x2 . SNo x2SNoLt x0 x2SNoLt (add_SNo x1 x2) (add_SNo x0 x0)∀ x3 : ο . (∀ x4 . and (x4SNoR x2) (add_SNo x1 x4 = add_SNo x0 x0)x3)x3
Known double_eps_1double_eps_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x0 = add_SNo x1 x2x0 = mul_SNo (eps_ 1) (add_SNo x1 x2)
Known nat_complete_indnat_complete_ind : ∀ x0 : ι → ο . (∀ x1 . nat_p x1(∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . nat_p x1x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known minus_SNo_Levminus_SNo_Lev : ∀ x0 . SNo x0SNoLev (minus_SNo x0) = SNoLev x0
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known SNo_max_ordinalSNo_max_ordinal : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLt x1 x0)ordinal x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoR_ISNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known ordinal_TransSetordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Theorem SNoS_omega_diadic_rational_p_lemSNoS_omega_diadic_rational_p_lem : ∀ x0 . nat_p x0∀ x1 . SNo x1SNoLev x1 = x0diadic_rational_p x1 (proof)
Theorem SNoS_omega_diadic_rational_pSNoS_omega_diadic_rational_p : ∀ x0 . x0SNoS_ omegadiadic_rational_p x0 (proof)