Search for blocks/addresses/...
Proofgold Asset
asset id
9223690000740189417e72f561f29d4a7f5aff1d81380e326e069b85314810f6
asset hash
0b0e11be01c62ee98e5e5c879fe3401f7e91ebde79b13fc69155d3b26cb5e839
bday / block
48789
tx
64012..
preasset
doc published by
PrMzh..
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Param
omega
omega
:
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Theorem
b2bdc..
:
omega
=
0
⟶
∀ x0 : ο .
x0
...
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
9348e..
:
∀ x0 : ο .
x0
⟶
0
∈
If_i
x0
1
0
...
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
9bd39..
:
∀ x0 : ο .
0
∈
If_i
x0
1
0
⟶
x0
...
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
9ca4f..
:=
λ x0 .
lam
x0
(
λ x1 .
lam
x0
(
λ x2 .
If_i
(
x1
=
x2
)
1
0
)
)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
If_i_or
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Known
In_1_2
In_1_2
:
1
∈
2
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
4488c..
:
∀ x0 .
9ca4f..
x0
∈
setexp
(
setexp
2
x0
)
x0
...
Param
ap
ap
:
ι
→
ι
→
ι
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
2d60a..
:
∀ x0 x1 .
x1
∈
x0
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x1
)
x1
...
Theorem
17684..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x1
)
x2
⟶
x1
=
x2
...
Theorem
ad55a..
:
∀ x0 .
x0
∈
2
⟶
∀ x1 .
x1
∈
2
⟶
0
∈
ap
(
ap
(
9ca4f..
2
)
x0
)
x1
⟶
0
∈
x0
⟶
0
∈
x1
...
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Theorem
5ab41..
:
∀ x0 .
x0
∈
2
⟶
∀ x1 .
x1
∈
2
⟶
(
0
∈
x0
⟶
0
∈
x1
)
⟶
(
0
∈
x1
⟶
0
∈
x0
)
⟶
0
∈
ap
(
ap
(
9ca4f..
2
)
x0
)
x1
...
Theorem
70484..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x1
)
x2
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x2
)
x3
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x1
)
x3
...
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
a94a5..
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 .
x3
∈
setexp
x1
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
0
∈
ap
(
ap
(
9ca4f..
(
setexp
x1
x0
)
)
x2
)
x3
⟶
0
∈
ap
(
ap
(
9ca4f..
x0
)
x4
)
x5
⟶
0
∈
ap
(
ap
(
9ca4f..
x1
)
(
ap
x2
x4
)
)
(
ap
x3
x5
)
...
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
7e67a..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x3
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
0
∈
ap
(
ap
(
9ca4f..
x1
)
(
x2
x4
)
)
(
x3
x4
)
)
⟶
0
∈
ap
(
ap
(
9ca4f..
(
setexp
x1
x0
)
)
(
lam
x0
x2
)
)
(
lam
x0
x3
)
...
Definition
8d6e5..
:=
ap
(
ap
(
9ca4f..
(
setexp
2
2
)
)
(
lam
2
(
λ x0 .
x0
)
)
)
(
lam
2
(
λ x0 .
x0
)
)
Theorem
18dc3..
:
8d6e5..
∈
2
...
Theorem
a497c..
:
0
∈
ap
(
ap
(
9ca4f..
2
)
8d6e5..
)
(
ap
(
ap
(
9ca4f..
(
setexp
2
2
)
)
(
lam
2
(
λ x0 .
x0
)
)
)
(
lam
2
(
λ x0 .
x0
)
)
)
...
Theorem
e7067..
:
0
∈
8d6e5..
...
Definition
9de32..
:=
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
ap
(
9ca4f..
(
setexp
2
(
setexp
(
setexp
2
2
)
2
)
)
)
(
lam
(
setexp
(
setexp
2
2
)
2
)
(
λ x2 .
ap
(
ap
x2
x0
)
x1
)
)
)
(
lam
(
setexp
(
setexp
2
2
)
2
)
(
λ x2 .
ap
(
ap
x2
8d6e5..
)
8d6e5..
)
)
)
)
Theorem
b2e87..
:
9de32..
∈
setexp
(
setexp
2
2
)
2
...
Theorem
e0fb0..
:
0
∈
ap
(
ap
(
9ca4f..
(
setexp
(
setexp
2
2
)
2
)
)
9de32..
)
(
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
ap
(
9ca4f..
(
setexp
2
(
setexp
(
setexp
2
2
)
2
)
)
)
(
lam
(
setexp
(
setexp
2
2
)
2
)
(
λ x2 .
ap
(
ap
x2
x0
)
x1
)
)
)
(
lam
(
setexp
(
setexp
2
2
)
2
)
(
λ x2 .
ap
(
ap
x2
8d6e5..
)
8d6e5..
)
)
)
)
)
...
Definition
90e5f..
:=
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
ap
(
9ca4f..
2
)
(
ap
(
ap
9de32..
x0
)
x1
)
)
x0
)
)
Theorem
0b79f..
:
90e5f..
∈
setexp
(
setexp
2
2
)
2
...
Theorem
ec419..
:
0
∈
ap
(
ap
(
9ca4f..
(
setexp
(
setexp
2
2
)
2
)
)
90e5f..
)
(
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
ap
(
9ca4f..
2
)
(
ap
(
ap
9de32..
x0
)
x1
)
)
x0
)
)
)
...
Definition
1c786..
:=
λ x0 .
lam
(
setexp
2
x0
)
(
λ x1 .
ap
(
ap
(
9ca4f..
(
setexp
2
x0
)
)
x1
)
(
lam
x0
(
λ x2 .
8d6e5..
)
)
)
Theorem
72e0b..
:
∀ x0 .
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
1c786..
x0
∈
setexp
2
(
setexp
2
x0
)
...
Theorem
897f1..
:
∀ x0 .
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
0
∈
ap
(
ap
(
9ca4f..
(
setexp
2
(
setexp
2
x0
)
)
)
(
1c786..
x0
)
)
(
lam
(
setexp
2
x0
)
(
λ x1 .
ap
(
ap
(
9ca4f..
(
setexp
2
x0
)
)
x1
)
(
lam
x0
(
λ x2 .
8d6e5..
)
)
)
)
...
Definition
82c61..
:=
λ x0 .
lam
(
setexp
2
x0
)
(
λ x1 .
ap
(
1c786..
2
)
(
lam
2
(
λ x2 .
ap
(
ap
90e5f..
(
ap
(
1c786..
x0
)
(
lam
x0
(
λ x3 .
ap
(
ap
90e5f..
(
ap
x1
x3
)
)
x2
)
)
)
)
x2
)
)
)
Theorem
05c85..
:
∀ x0 .
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
82c61..
x0
∈
setexp
2
(
setexp
2
x0
)
...
Theorem
cee69..
:
∀ x0 .
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
0
∈
ap
(
ap
(
9ca4f..
(
setexp
2
(
setexp
2
x0
)
)
)
(
82c61..
x0
)
)
(
lam
(
setexp
2
x0
)
(
λ x1 .
ap
(
1c786..
2
)
(
lam
2
(
λ x2 .
ap
(
ap
90e5f..
(
ap
(
1c786..
x0
)
(
lam
x0
(
λ x3 .
ap
(
ap
90e5f..
(
ap
x1
x3
)
)
x2
)
)
)
)
x2
)
)
)
)
...
Definition
8a736..
:=
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
1c786..
2
)
(
lam
2
(
λ x2 .
ap
(
ap
90e5f..
(
ap
(
ap
90e5f..
x0
)
x2
)
)
(
ap
(
ap
90e5f..
(
ap
(
ap
90e5f..
x1
)
x2
)
)
x2
)
)
)
)
)
Theorem
7c7c0..
:
8a736..
∈
setexp
(
setexp
2
2
)
2
...
Theorem
18a89..
:
0
∈
ap
(
ap
(
9ca4f..
(
setexp
(
setexp
2
2
)
2
)
)
8a736..
)
(
lam
2
(
λ x0 .
lam
2
(
λ x1 .
ap
(
1c786..
2
)
(
lam
2
(
λ x2 .
ap
(
ap
90e5f..
(
ap
(
ap
90e5f..
x0
)
x2
)
)
(
ap
(
ap
90e5f..
(
ap
(
ap
90e5f..
x1
)
x2
)
)
x2
)
)
)
)
)
)
...
Definition
497c5..
:=
ap
(
1c786..
2
)
(
lam
2
(
λ x0 .
x0
)
)
Theorem
eed34..
:
497c5..
∈
2
...
Theorem
b131f..
:
0
∈
ap
(
ap
(
9ca4f..
2
)
497c5..
)
(
ap
(
1c786..
2
)
(
lam
2
(
λ x0 .
x0
)
)
)
...
Definition
d8d8a..
:=
lam
2
(
λ x0 .
ap
(
ap
90e5f..
x0
)
497c5..
)
Theorem
07b96..
:
d8d8a..
∈
setexp
2
2
...
Theorem
1391d..
:
0
∈
ap
(
ap
(
9ca4f..
(
setexp
2
2
)
)
d8d8a..
)
(
lam
2
(
λ x0 .
ap
(
ap
90e5f..
x0
)
497c5..
)
)
...