Search for blocks/addresses/...

Proofgold Asset

asset id
923e76778147fd288494c2ab0d4689a53d71ebb3a94399b3d8b1f1466f48e55a
asset hash
38ef5d1ca971c602646040c2ffdb3dc435e47eb0a5db2d882b4fb5619a150c6e
bday / block
4938
tx
e10e8..
preasset
doc published by Pr6Pc..
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param encode_cencode_c : ι((ιο) → ο) → ι
Param encode_bencode_b : ιCT2 ι
Definition pack_c_b := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) (encode_c x0 x1) (encode_b x0 x2)))
Param apap : ιιι
Known tuple_3_0_eqtuple_3_0_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 0 = x0
Theorem pack_c_b_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . x0 = pack_c_b x1 x2 x3x1 = ap x0 0 (proof)
Theorem pack_c_b_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . x0 = ap (pack_c_b x0 x1 x2) 0 (proof)
Param decode_cdecode_c : ι(ιο) → ο
Known tuple_3_1_eqtuple_3_1_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 1 = x1
Known decode_encode_cdecode_encode_c : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3x3x0)decode_c (encode_c x0 x1) x2 = x1 x2
Theorem pack_c_b_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . x0 = pack_c_b x1 x2 x3∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)x2 x4 = decode_c (ap x0 1) x4 (proof)
Theorem pack_c_b_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)x1 x3 = decode_c (ap (pack_c_b x0 x1 x2) 1) x3 (proof)
Param decode_bdecode_b : ιιιι
Known tuple_3_2_eqtuple_3_2_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 2 = x2
Known decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3
Theorem pack_c_b_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . x0 = pack_c_b x1 x2 x3∀ x4 . x4x1∀ x5 . x5x1x3 x4 x5 = decode_b (ap x0 2) x4 x5 (proof)
Theorem pack_c_b_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4 = decode_b (ap (pack_c_b x0 x1 x2) 2) x3 x4 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem pack_c_b_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . pack_c_b x0 x2 x4 = pack_c_b x1 x3 x5and (and (x0 = x1) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)x2 x6 = x3 x6)) (∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x5 x6 x7) (proof)
Param iffiff : οοο
Known encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)encode_b x0 x1 = encode_b x0 x2
Known encode_c_extencode_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3))encode_c x0 x1 = encode_c x0 x2
Theorem pack_c_b_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x0)iff (x1 x5) (x2 x5))(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x4 x5 x6)pack_c_b x0 x1 x3 = pack_c_b x0 x2 x4 (proof)
Definition struct_c_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . x5x2∀ x6 . x6x2x4 x5 x6x2)x1 (pack_c_b x2 x3 x4))x1 x0
Theorem pack_struct_c_b_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)struct_c_b (pack_c_b x0 x1 x2) (proof)
Theorem pack_struct_c_b_E2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . struct_c_b (pack_c_b x0 x1 x2)∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0 (proof)
Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0
Theorem struct_c_b_eta : ∀ x0 . struct_c_b x0x0 = pack_c_b (ap x0 0) (decode_c (ap x0 1)) (decode_b (ap x0 2)) (proof)
Definition unpack_c_b_i := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι) → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_b (ap x0 2))
Theorem unpack_c_b_i_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι → ι . (∀ x6 . x6x1∀ x7 . x7x1x3 x6 x7 = x5 x6 x7)x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_b_i (pack_c_b x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition unpack_c_b_o := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι) → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_b (ap x0 2))
Theorem unpack_c_b_o_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι → ι . (∀ x6 . x6x1∀ x7 . x7x1x3 x6 x7 = x5 x6 x7)x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_b_o (pack_c_b x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition pack_c_u := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι . lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) (encode_c x0 x1) (lam x0 x2)))
Theorem pack_c_u_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι . x0 = pack_c_u x1 x2 x3x1 = ap x0 0 (proof)
Theorem pack_c_u_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι . x0 = ap (pack_c_u x0 x1 x2) 0 (proof)
Theorem pack_c_u_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι . x0 = pack_c_u x1 x2 x3∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)x2 x4 = decode_c (ap x0 1) x4 (proof)
Theorem pack_c_u_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)x1 x3 = decode_c (ap (pack_c_u x0 x1 x2) 1) x3 (proof)
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem pack_c_u_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι . x0 = pack_c_u x1 x2 x3∀ x4 . x4x1x3 x4 = ap (ap x0 2) x4 (proof)
Theorem pack_c_u_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x2 x3 = ap (ap (pack_c_u x0 x1 x2) 2) x3 (proof)
Theorem pack_c_u_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι . pack_c_u x0 x2 x4 = pack_c_u x1 x3 x5and (and (x0 = x1) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)x2 x6 = x3 x6)) (∀ x6 . x6x0x4 x6 = x5 x6) (proof)
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem pack_c_u_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x0)iff (x1 x5) (x2 x5))(∀ x5 . x5x0x3 x5 = x4 x5)pack_c_u x0 x1 x3 = pack_c_u x0 x2 x4 (proof)
Definition struct_c_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι . (∀ x5 . x5x2x4 x5x2)x1 (pack_c_u x2 x3 x4))x1 x0
Theorem pack_struct_c_u_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x0)struct_c_u (pack_c_u x0 x1 x2) (proof)
Theorem pack_struct_c_u_E2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι . struct_c_u (pack_c_u x0 x1 x2)∀ x3 . x3x0x2 x3x0 (proof)
Theorem struct_c_u_eta : ∀ x0 . struct_c_u x0x0 = pack_c_u (ap x0 0) (decode_c (ap x0 1)) (ap (ap x0 2)) (proof)
Definition unpack_c_u_i := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι) → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (ap (ap x0 2))
Theorem unpack_c_u_i_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι . (∀ x6 . x6x1x3 x6 = x5 x6)x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_u_i (pack_c_u x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition unpack_c_u_o := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι) → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (ap (ap x0 2))
Theorem unpack_c_u_o_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι . (∀ x6 . x6x1x3 x6 = x5 x6)x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_u_o (pack_c_u x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Param encode_rencode_r : ι(ιιο) → ι
Definition pack_c_r := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ο . lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) (encode_c x0 x1) (encode_r x0 x2)))
Theorem pack_c_r_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ο . x0 = pack_c_r x1 x2 x3x1 = ap x0 0 (proof)
Theorem pack_c_r_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 x3 : ι → ι → ο . x3 x0 (ap (pack_c_r x0 x1 x2) 0)x3 (ap (pack_c_r x0 x1 x2) 0) x0 (proof)
Theorem pack_c_r_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ο . x0 = pack_c_r x1 x2 x3∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)x2 x4 = decode_c (ap x0 1) x4 (proof)
Theorem pack_c_r_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)x1 x3 = decode_c (ap (pack_c_r x0 x1 x2) 1) x3 (proof)
Param decode_rdecode_r : ιιιο
Known decode_encode_rdecode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2x0∀ x3 . x3x0decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3
Theorem pack_c_r_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ο . x0 = pack_c_r x1 x2 x3∀ x4 . x4x1∀ x5 . x5x1x3 x4 x5 = decode_r (ap x0 2) x4 x5 (proof)
Theorem pack_c_r_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ο . ∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4 = decode_r (ap (pack_c_r x0 x1 x2) 2) x3 x4 (proof)
Theorem pack_c_r_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ο . pack_c_r x0 x2 x4 = pack_c_r x1 x3 x5and (and (x0 = x1) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)x2 x6 = x3 x6)) (∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x5 x6 x7) (proof)
Known encode_r_extencode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))encode_r x0 x1 = encode_r x0 x2
Theorem pack_c_r_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x0)iff (x1 x5) (x2 x5))(∀ x5 . x5x0∀ x6 . x6x0iff (x3 x5 x6) (x4 x5 x6))pack_c_r x0 x1 x3 = pack_c_r x0 x2 x4 (proof)
Definition struct_c_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ο . x1 (pack_c_r x2 x3 x4))x1 x0
Theorem pack_struct_c_r_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ο . struct_c_r (pack_c_r x0 x1 x2) (proof)
Theorem struct_c_r_eta : ∀ x0 . struct_c_r x0x0 = pack_c_r (ap x0 0) (decode_c (ap x0 1)) (decode_r (ap x0 2)) (proof)
Definition unpack_c_r_i := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ο) → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_r (ap x0 2))
Theorem unpack_c_r_i_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ο . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι → ο . (∀ x6 . x6x1∀ x7 . x7x1iff (x3 x6 x7) (x5 x6 x7))x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_r_i (pack_c_r x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition unpack_c_r_o := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ο) → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_r (ap x0 2))
Theorem unpack_c_r_o_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ο . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ι → ο . (∀ x6 . x6x1∀ x7 . x7x1iff (x3 x6 x7) (x5 x6 x7))x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_r_o (pack_c_r x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Param SepSep : ι(ιο) → ι
Definition pack_c_p := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ο . lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) (encode_c x0 x1) (Sep x0 x2)))
Theorem pack_c_p_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . x0 = pack_c_p x1 x2 x3x1 = ap x0 0 (proof)
Theorem pack_c_p_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . x0 = ap (pack_c_p x0 x1 x2) 0 (proof)
Theorem pack_c_p_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . x0 = pack_c_p x1 x2 x3∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)x2 x4 = decode_c (ap x0 1) x4 (proof)
Theorem pack_c_p_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 x3 : ι → ο . (∀ x4 . x3 x4x4x0)x1 x3 = decode_c (ap (pack_c_p x0 x1 x2) 1) x3 (proof)
Param decode_pdecode_p : ιιο
Known decode_encode_pdecode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0decode_p (Sep x0 x1) x2 = x1 x2
Theorem pack_c_p_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . x0 = pack_c_p x1 x2 x3∀ x4 . x4x1x3 x4 = decode_p (ap x0 2) x4 (proof)
Theorem pack_c_p_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . x3x0x2 x3 = decode_p (ap (pack_c_p x0 x1 x2) 2) x3 (proof)
Theorem pack_c_p_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ο . pack_c_p x0 x2 x4 = pack_c_p x1 x3 x5and (and (x0 = x1) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)x2 x6 = x3 x6)) (∀ x6 . x6x0x4 x6 = x5 x6) (proof)
Known encode_p_extencode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))Sep x0 x1 = Sep x0 x2
Theorem pack_c_p_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x0)iff (x1 x5) (x2 x5))(∀ x5 . x5x0iff (x3 x5) (x4 x5))pack_c_p x0 x1 x3 = pack_c_p x0 x2 x4 (proof)
Definition struct_c_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ο . x1 (pack_c_p x2 x3 x4))x1 x0
Theorem pack_struct_c_p_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . struct_c_p (pack_c_p x0 x1 x2) (proof)
Theorem struct_c_p_eta : ∀ x0 . struct_c_p x0x0 = pack_c_p (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2)) (proof)
Definition unpack_c_p_i := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ο) → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2))
Theorem unpack_c_p_i_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ο . (∀ x6 . x6x1iff (x3 x6) (x5 x6))x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_p_i (pack_c_p x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition unpack_c_p_o := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ο) → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2))
Theorem unpack_c_p_o_eq : ∀ x0 : ι → ((ι → ο) → ο)(ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))∀ x5 : ι → ο . (∀ x6 . x6x1iff (x3 x6) (x5 x6))x0 x1 x4 x5 = x0 x1 x2 x3)unpack_c_p_o (pack_c_p x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition pack_c_e := λ x0 . λ x1 : (ι → ο) → ο . λ x2 . lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) (encode_c x0 x1) x2))
Theorem pack_c_e_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 . x0 = pack_c_e x1 x2 x3x1 = ap x0 0 (proof)
Theorem pack_c_e_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 . x0 = ap (pack_c_e x0 x1 x2) 0 (proof)
Theorem pack_c_e_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 . x0 = pack_c_e x1 x2 x3∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)x2 x4 = decode_c (ap x0 1) x4 (proof)
Theorem pack_c_e_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 . ∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)x1 x3 = decode_c (ap (pack_c_e x0 x1 x2) 1) x3 (proof)
Theorem pack_c_e_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 . x0 = pack_c_e x1 x2 x3x3 = ap x0 2 (proof)
Theorem pack_c_e_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 . x2 = ap (pack_c_e x0 x1 x2) 2 (proof)
Theorem pack_c_e_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 . pack_c_e x0 x2 x4 = pack_c_e x1 x3 x5and (and (x0 = x1) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)x2 x6 = x3 x6)) (x4 = x5) (proof)
Theorem pack_c_e_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 . (∀ x4 : ι → ο . (∀ x5 . x4 x5x5x0)iff (x1 x4) (x2 x4))pack_c_e x0 x1 x3 = pack_c_e x0 x2 x3 (proof)
Definition struct_c_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 . x4x2x1 (pack_c_e x2 x3 x4))x1 x0
Theorem pack_struct_c_e_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 . x2x0struct_c_e (pack_c_e x0 x1 x2) (proof)
Theorem pack_struct_c_e_E2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 . struct_c_e (pack_c_e x0 x1 x2)x2x0 (proof)
Theorem struct_c_e_eta : ∀ x0 . struct_c_e x0x0 = pack_c_e (ap x0 0) (decode_c (ap x0 1)) (ap x0 2) (proof)
Definition unpack_c_e_i := λ x0 . λ x1 : ι → ((ι → ο) → ο)ι → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (ap x0 2)
Theorem unpack_c_e_i_eq : ∀ x0 : ι → ((ι → ο) → ο)ι → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))x0 x1 x4 x3 = x0 x1 x2 x3)unpack_c_e_i (pack_c_e x1 x2 x3) x0 = x0 x1 x2 x3 (proof)
Definition unpack_c_e_o := λ x0 . λ x1 : ι → ((ι → ο) → ο)ι → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (ap x0 2)
Theorem unpack_c_e_o_eq : ∀ x0 : ι → ((ι → ο) → ο)ι → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 . (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6x6x1)iff (x2 x5) (x4 x5))x0 x1 x4 x3 = x0 x1 x2 x3)unpack_c_e_o (pack_c_e x1 x2 x3) x0 = x0 x1 x2 x3 (proof)