Search for blocks/addresses/...

Proofgold Asset

asset id
92d8f26812b0d52528aeb72e04a4a7eeccc4cb5b85e0a92f240a21c5ec4f2518
asset hash
7ca0bc5b1678de44eb52721f54654a6fab7626bb24d33046dd8a0285ebe96822
bday / block
36387
tx
337cc..
preasset
doc published by PrCmT..
Known df_ch__df_oc__df_ch0__df_shs__df_span__df_chj__df_chsup__df_pjh__df_cm__df_hosum__df_homul__df_hodif__df_hfsum__df_hfmul__df_h0op__df_iop__df_nmop__df_cnop : ∀ x0 : ο . (wceq cch (crab (λ x1 . wss (cima chli (co (cv x1) cn cmap)) (cv x1)) (λ x1 . csh))wceq cort (cmpt (λ x1 . cpw chil) (λ x1 . crab (λ x2 . wral (λ x3 . wceq (co (cv x2) (cv x3) csp) cc0) (λ x3 . cv x1)) (λ x2 . chil)))wceq c0h (csn c0v)wceq cph (cmpt2 (λ x1 x2 . csh) (λ x1 x2 . csh) (λ x1 x2 . cima cva (cxp (cv x1) (cv x2))))wceq cspn (cmpt (λ x1 . cpw chil) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . csh))))wceq chj (cmpt2 (λ x1 x2 . cpw chil) (λ x1 x2 . cpw chil) (λ x1 x2 . cfv (cfv (cun (cv x1) (cv x2)) cort) cort))wceq chsup (cmpt (λ x1 . cpw (cpw chil)) (λ x1 . cfv (cfv (cuni (cv x1)) cort) cort))wceq cpjh (cmpt (λ x1 . cch) (λ x1 . cmpt (λ x2 . chil) (λ x2 . crio (λ x3 . wrex (λ x4 . wceq (cv x2) (co (cv x3) (cv x4) cva)) (λ x4 . cfv (cv x1) cort)) (λ x3 . cv x1))))wceq ccm (copab (λ x1 x2 . wa (wa (wcel (cv x1) cch) (wcel (cv x2) cch)) (wceq (cv x1) (co (cin (cv x1) (cv x2)) (cin (cv x1) (cfv (cv x2) cort)) chj))))wceq chos (cmpt2 (λ x1 x2 . co chil chil cmap) (λ x1 x2 . co chil chil cmap) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) cva)))wceq chot (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . co chil chil cmap) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (cv x1) (cfv (cv x3) (cv x2)) csm)))wceq chod (cmpt2 (λ x1 x2 . co chil chil cmap) (λ x1 x2 . co chil chil cmap) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) cmv)))wceq chfs (cmpt2 (λ x1 x2 . co cc chil cmap) (λ x1 x2 . co cc chil cmap) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) caddc)))wceq chft (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . co cc chil cmap) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (cv x1) (cfv (cv x3) (cv x2)) cmul)))wceq ch0o (cfv c0h cpjh)wceq chio (cfv chil cpjh)wceq cnop (cmpt (λ x1 . co chil chil cmap) (λ x1 . csup (cab (λ x2 . wrex (λ x3 . wa (wbr (cfv (cv x3) cno) c1 cle) (wceq (cv x2) (cfv (cfv (cv x3) (cv x1)) cno))) (λ x3 . chil))) cxr clt))wceq ccop (crab (λ x1 . wral (λ x2 . wral (λ x3 . wrex (λ x4 . wral (λ x5 . wbr (cfv (co (cv x5) (cv x2) cmv) cno) (cv x4) cltwbr (cfv (co (cfv (cv x5) (cv x1)) (cfv (cv x2) (cv x1)) cmv) cno) (cv x3) clt) (λ x5 . chil)) (λ x4 . crp)) (λ x3 . crp)) (λ x2 . chil)) (λ x1 . co chil chil cmap))x0)x0
Theorem df_ch : wceq cch (crab (λ x0 . wss (cima chli (co (cv x0) cn cmap)) (cv x0)) (λ x0 . csh)) (proof)
Theorem df_oc : wceq cort (cmpt (λ x0 . cpw chil) (λ x0 . crab (λ x1 . wral (λ x2 . wceq (co (cv x1) (cv x2) csp) cc0) (λ x2 . cv x0)) (λ x1 . chil))) (proof)
Theorem df_ch0 : wceq c0h (csn c0v) (proof)
Theorem df_shs : wceq cph (cmpt2 (λ x0 x1 . csh) (λ x0 x1 . csh) (λ x0 x1 . cima cva (cxp (cv x0) (cv x1)))) (proof)
Theorem df_span : wceq cspn (cmpt (λ x0 . cpw chil) (λ x0 . cint (crab (λ x1 . wss (cv x0) (cv x1)) (λ x1 . csh)))) (proof)
Theorem df_chj : wceq chj (cmpt2 (λ x0 x1 . cpw chil) (λ x0 x1 . cpw chil) (λ x0 x1 . cfv (cfv (cun (cv x0) (cv x1)) cort) cort)) (proof)
Theorem df_chsup : wceq chsup (cmpt (λ x0 . cpw (cpw chil)) (λ x0 . cfv (cfv (cuni (cv x0)) cort) cort)) (proof)
Theorem df_pjh : wceq cpjh (cmpt (λ x0 . cch) (λ x0 . cmpt (λ x1 . chil) (λ x1 . crio (λ x2 . wrex (λ x3 . wceq (cv x1) (co (cv x2) (cv x3) cva)) (λ x3 . cfv (cv x0) cort)) (λ x2 . cv x0)))) (proof)
Theorem df_cm : wceq ccm (copab (λ x0 x1 . wa (wa (wcel (cv x0) cch) (wcel (cv x1) cch)) (wceq (cv x0) (co (cin (cv x0) (cv x1)) (cin (cv x0) (cfv (cv x1) cort)) chj)))) (proof)
Theorem df_hosum : wceq chos (cmpt2 (λ x0 x1 . co chil chil cmap) (λ x0 x1 . co chil chil cmap) (λ x0 x1 . cmpt (λ x2 . chil) (λ x2 . co (cfv (cv x2) (cv x0)) (cfv (cv x2) (cv x1)) cva))) (proof)
Theorem df_homul : wceq chot (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . co chil chil cmap) (λ x0 x1 . cmpt (λ x2 . chil) (λ x2 . co (cv x0) (cfv (cv x2) (cv x1)) csm))) (proof)
Theorem df_hodif : wceq chod (cmpt2 (λ x0 x1 . co chil chil cmap) (λ x0 x1 . co chil chil cmap) (λ x0 x1 . cmpt (λ x2 . chil) (λ x2 . co (cfv (cv x2) (cv x0)) (cfv (cv x2) (cv x1)) cmv))) (proof)
Theorem df_hfsum : wceq chfs (cmpt2 (λ x0 x1 . co cc chil cmap) (λ x0 x1 . co cc chil cmap) (λ x0 x1 . cmpt (λ x2 . chil) (λ x2 . co (cfv (cv x2) (cv x0)) (cfv (cv x2) (cv x1)) caddc))) (proof)
Theorem df_hfmul : wceq chft (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . co cc chil cmap) (λ x0 x1 . cmpt (λ x2 . chil) (λ x2 . co (cv x0) (cfv (cv x2) (cv x1)) cmul))) (proof)
Theorem df_h0op : wceq ch0o (cfv c0h cpjh) (proof)
Theorem df_iop : wceq chio (cfv chil cpjh) (proof)
Theorem df_nmop : wceq cnop (cmpt (λ x0 . co chil chil cmap) (λ x0 . csup (cab (λ x1 . wrex (λ x2 . wa (wbr (cfv (cv x2) cno) c1 cle) (wceq (cv x1) (cfv (cfv (cv x2) (cv x0)) cno))) (λ x2 . chil))) cxr clt)) (proof)
Theorem df_cnop : wceq ccop (crab (λ x0 . wral (λ x1 . wral (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (co (cv x4) (cv x1) cmv) cno) (cv x3) cltwbr (cfv (co (cfv (cv x4) (cv x0)) (cfv (cv x1) (cv x0)) cmv) cno) (cv x2) clt) (λ x4 . chil)) (λ x3 . crp)) (λ x2 . crp)) (λ x1 . chil)) (λ x0 . co chil chil cmap)) (proof)