Search for blocks/addresses/...
Proofgold Asset
asset id
93b073a735b6332511c14fd7ecb638cdb4d0206bd35f1d2811d0a5c5a37de178
asset hash
3408c2eecc07d7f68a794c5e46e36e7e730ad445c6adba5c934f45ede293eb41
bday / block
35164
tx
6940a..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
f3acb..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
∀ x5 :
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι → ο
.
∀ x8 :
ι → ο
.
∀ x9 :
ι → ι
.
∀ x10 x11 x12 :
ι → ο
.
∀ x13 x14 :
ι → ι
.
∀ x15 :
ι →
ι → ι
.
∀ x16 x17 :
ι → ο
.
∀ x18 :
ι → ι
.
∀ x19 x20 .
∀ x21 :
ι →
ι → ι
.
∀ x22 :
ι →
ι → ο
.
∀ x23 :
ι → ο
.
∀ x24 x25 .
∀ x26 :
ι →
ι → ο
.
∀ x27 .
∀ x28 :
ι → ι
.
∀ x29 x30 .
∀ x31 :
ι → ο
.
∀ x32 :
ι → ι
.
∀ x33 .
∀ x34 :
ι → ο
.
(
∀ x35 x36 .
x34
x36
⟶
(
x36
=
x35
⟶
False
)
⟶
x34
x35
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x35
x36
⟶
x34
x36
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x35
=
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x0
x35
x36
⟶
x2
x36
(
x1
x37
)
⟶
x34
x37
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x0
x36
x37
⟶
x2
x37
(
x1
x35
)
⟶
(
x2
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x3
x36
x35
⟶
(
x2
x36
(
x1
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
x35
)
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x35
x36
⟶
(
x34
x36
⟶
False
)
⟶
(
x0
x35
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x36
x35
⟶
(
x2
x36
x35
⟶
False
)
⟶
False
)
⟶
(
x34
x4
⟶
False
)
⟶
(
∀ x35 .
(
x3
x35
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
(
x7
(
x6
x35
)
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
(
x2
(
x6
x35
)
(
x1
(
x32
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
x34
(
x9
x35
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
(
x2
(
x9
x35
)
(
x1
(
x32
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x11
x35
⟶
False
)
⟶
x10
x35
⟶
x12
(
x13
x35
)
⟶
False
)
⟶
(
∀ x35 .
(
x11
x35
⟶
False
)
⟶
x10
x35
⟶
(
x2
(
x13
x35
)
(
x1
(
x32
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
(
x12
(
x14
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
x34
(
x14
x35
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
(
x2
(
x14
x35
)
(
x1
(
x32
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x31
x30
⟶
False
)
⟶
False
)
⟶
(
(
x5
x30
⟶
False
)
⟶
False
)
⟶
(
(
x31
x29
⟶
False
)
⟶
False
)
⟶
(
(
x8
x29
⟶
False
)
⟶
False
)
⟶
(
(
x5
x29
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x2
x37
(
x1
(
x1
x38
)
)
⟶
x15
x38
x37
=
x15
x36
x35
⟶
(
x37
=
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x2
x37
(
x1
(
x1
x38
)
)
⟶
x15
x38
x37
=
x15
x35
x36
⟶
(
x38
=
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x16
x35
⟶
False
)
⟶
x10
x35
⟶
x17
(
x32
x35
)
⟶
False
)
⟶
(
∀ x35 x36 .
(
x34
x36
⟶
False
)
⟶
x2
x35
(
x1
(
x1
x36
)
)
⟶
(
x31
(
x15
x36
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
(
x34
x36
⟶
False
)
⟶
x2
x35
(
x1
(
x1
x36
)
)
⟶
x8
(
x15
x36
x35
)
⟶
False
)
⟶
(
∀ x35 .
x16
x35
⟶
x10
x35
⟶
(
x17
(
x32
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x11
x35
⟶
x10
x35
⟶
(
x12
(
x32
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x5
x35
⟶
(
x31
(
x15
(
x32
x35
)
(
x28
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x5
x35
⟶
x8
(
x15
(
x32
x35
)
(
x28
x35
)
)
⟶
False
)
⟶
(
∀ x35 .
(
x11
x35
⟶
False
)
⟶
x10
x35
⟶
x12
(
x32
x35
)
⟶
False
)
⟶
(
∀ x35 .
(
x8
x35
⟶
False
)
⟶
x10
x35
⟶
x34
(
x32
x35
)
⟶
False
)
⟶
(
∀ x35 .
x8
x35
⟶
x10
x35
⟶
(
x34
(
x32
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x2
(
x18
x35
)
x35
⟶
False
)
⟶
False
)
⟶
(
(
x10
x27
⟶
False
)
⟶
False
)
⟶
(
(
x5
x19
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
(
x2
(
x28
x35
)
(
x1
(
x1
(
x32
x35
)
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x34
x20
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
(
x10
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
(
x1
x35
)
)
⟶
(
x5
(
x15
x35
x36
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
(
x1
x35
)
)
⟶
(
x31
(
x15
x35
x36
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
(
x21
x35
x36
)
x35
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
(
x0
(
x21
x35
x36
)
x36
⟶
False
)
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x3
x36
x37
⟶
x0
x35
x36
⟶
(
x0
x35
x37
⟶
False
)
⟶
False
)
⟶
(
(
x33
=
x20
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x2
x35
(
x1
(
x32
x36
)
)
⟶
x0
x35
(
x28
x36
)
⟶
(
x22
x35
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x2
x35
(
x1
(
x32
x36
)
)
⟶
x22
x35
x36
⟶
(
x0
x35
(
x28
x36
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x3
x36
x35
⟶
x3
x35
x36
⟶
(
x36
=
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x35
=
x36
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x36
=
x35
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x26
x35
x33
⟶
(
x8
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x8
x35
⟶
(
x23
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x8
x35
⟶
(
x26
x35
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x16
x35
⟶
False
)
⟶
x11
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x11
x35
⟶
(
x16
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x16
x35
⟶
False
)
⟶
x16
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x16
x35
⟶
False
)
⟶
x8
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x8
x35
⟶
(
x16
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x8
x35
⟶
(
x8
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x2
x35
(
x1
(
x32
x36
)
)
⟶
x34
x35
⟶
(
x7
x35
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x11
x35
⟶
False
)
⟶
x8
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x8
x35
⟶
(
x11
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x11
x35
⟶
False
)
⟶
x8
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x26
x35
x4
⟶
(
x11
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
x26
x35
x4
⟶
x8
x35
⟶
False
)
⟶
(
∀ x35 .
x10
x35
⟶
(
x8
x35
⟶
False
)
⟶
x11
x35
⟶
(
x26
x35
x4
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x35
x36
⟶
x0
x36
x35
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x31
x35
⟶
(
x35
=
x15
(
x32
x35
)
(
x28
x35
)
⟶
False
)
⟶
False
)
⟶
(
x15
(
x32
x25
)
(
x28
x25
)
=
x15
(
x32
x24
)
(
x28
x24
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
(
x32
x25
)
)
⟶
x2
x35
(
x1
(
x32
x24
)
)
⟶
x36
=
x35
⟶
x22
x35
x24
⟶
(
x22
x36
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
(
x32
x25
)
)
⟶
x2
x35
(
x1
(
x32
x24
)
)
⟶
x36
=
x35
⟶
x22
x36
x25
⟶
(
x22
x35
x24
⟶
False
)
⟶
False
)
⟶
(
(
x32
x25
=
x32
x24
⟶
False
)
⟶
False
)
⟶
(
(
x5
x24
⟶
False
)
⟶
False
)
⟶
(
(
x5
x25
⟶
False
)
⟶
False
)
⟶
False
(proof)