Search for blocks/addresses/...

Proofgold Asset

asset id
9429b25068ce653faacd6c39cbfd8e2bc748af997570b1b798c26697cf3ac4c9
asset hash
6d1509cc7d85bc9c82bf65aa628c59a2aa63d6474c2f04e72d9a9412505b4bc5
bday / block
20291
tx
c797b..
preasset
doc published by Pr4zB..
Definition Church6_p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2)x1 (λ x2 x3 x4 x5 x6 x7 . x3)x1 (λ x2 x3 x4 x5 x6 x7 . x4)x1 (λ x2 x3 x4 x5 x6 x7 . x5)x1 (λ x2 x3 x4 x5 x6 x7 . x6)x1 (λ x2 x3 x4 x5 x6 x7 . x7)x1 x0
Definition TwoRamseyGraph_4_6_Church6_squared_b := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x5)) (x2 (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x5)) (x2 (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x5)) (x2 (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x5))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x5)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x4 x4 x4 x4 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x4 x4 x4 x4 x5))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5)))
Theorem 624d6.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0Church6_p x1TwoRamseyGraph_4_6_Church6_squared_b x0 x1 (λ x3 x4 x5 x6 x7 x8 . x8) (λ x3 x4 x5 x6 x7 x8 . x8) = λ x3 x4 . x4 (proof)
Param u6 : ι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param nth_6_tuple : ιιιιιιιι
Definition TwoRamseyGraph_4_6_35_b := λ x0 x1 x2 x3 . x0u6x1u6x2u6x3u6TwoRamseyGraph_4_6_Church6_squared_b (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5
Param u5 : ι
Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1)∀ x0 : ο . x0
Known fed6d.. : nth_6_tuple u5 = λ x1 x2 x3 x4 x5 x6 . x6
Known 3b8c0.. : ∀ x0 . x0u6Church6_p (nth_6_tuple x0)
Known In_5_6In_5_6 : u5u6
Theorem 925f5.. : ∀ x0 . x0u6∀ x1 . x1u6not (TwoRamseyGraph_4_6_35_b x0 x1 u5 u5) (proof)
Param u2 : ι
Param u4 : ι
Param u3 : ι
Known a0d60.. : nth_6_tuple u2 = λ x1 x2 x3 x4 x5 x6 . x3
Known 33924.. : nth_6_tuple u4 = λ x1 x2 x3 x4 x5 x6 . x5
Known 89684.. : nth_6_tuple u3 = λ x1 x2 x3 x4 x5 x6 . x4
Known In_2_6In_2_6 : u2u6
Known In_4_6In_4_6 : u4u6
Known In_3_6In_3_6 : u3u6
Theorem 26f6c.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u2 u4 u3 x0) (proof)
Theorem 15002.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u2 u4 u5 x0) (proof)
Theorem 7df24.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u2 u5 u3 x0) (proof)
Theorem c146d.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u2 u5 u5 x0) (proof)
Theorem a1470.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u3 u4 u4 x0) (proof)
Theorem 14b47.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u3 u5 u4 x0) (proof)
Known a1243.. : nth_6_tuple 0 = λ x1 x2 x3 x4 x5 x6 . x1
Known In_0_6In_0_6 : 0u6
Theorem f7b63.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u4 0 x0) (proof)
Theorem a400d.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u4 u2 x0) (proof)
Theorem 2e8bc.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u5 0 x0) (proof)
Theorem c08c2.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u5 u2 x0) (proof)
Theorem 54691.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u5 u4 u5 x0) (proof)
Theorem e902e.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b 0 0 x0 u5) (proof)
Param u1 : ι
Known a7cad.. : nth_6_tuple u1 = λ x1 x2 x3 x4 x5 x6 . x2
Known In_1_6In_1_6 : u1u6
Theorem ca8df.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b 0 u1 x0 u4) (proof)
Theorem f12e2.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u3 u3 x0 u5) (proof)
Theorem 9b9cd.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 0 x0 u4) (proof)
Theorem 6e2f9.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u1 x0 u5) (proof)
Theorem 5d253.. : ∀ x0 . x0u6not (TwoRamseyGraph_4_6_35_b u4 u5 x0 u5) (proof)
Definition TwoRamseyGraph_4_6_Church6_squared_a := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x4)) (x2 (x3 x5 x4 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x4)) (x2 (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x4)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x4))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x4 x4 x4 x4 x4 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x4 x4 x4 x4 x4))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4)))
Definition TwoRamseyGraph_4_6_35_a := λ x0 x1 x2 x3 . TwoRamseyGraph_4_6_Church6_squared_a (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5
Theorem 2e599.. : ∀ x0 . x0u6TwoRamseyGraph_4_6_35_a u4 u4 u5 x0 (proof)
Theorem ff9a1.. : ∀ x0 . x0u6TwoRamseyGraph_4_6_35_a u4 u5 u5 x0 (proof)