Search for blocks/addresses/...
Proofgold Asset
asset id
75fda79d986d25b8ba361323483e66f3fb304e1dbb051876fe12d7615f9a7565
asset hash
960821cb16ee4827235f5be7028ea870639b37197b30ca20ea9478df3b3f639c
bday / block
18006
tx
51713..
preasset
doc published by
Pr4zB..
Definition
Church13_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x14
)
⟶
x1
x0
Theorem
fe032..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x0
)
(proof)
Theorem
19e27..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x1
)
(proof)
Theorem
f85ed..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x2
)
(proof)
Theorem
82a17..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x3
)
(proof)
Theorem
59a5f..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x4
)
(proof)
Theorem
5ca83..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x5
)
(proof)
Theorem
40dec..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x6
)
(proof)
Theorem
41eb8..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x7
)
(proof)
Theorem
42638..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x8
)
(proof)
Theorem
34c89..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x9
)
(proof)
Theorem
bf246..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x10
)
(proof)
Theorem
7e49d..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x11
)
(proof)
Theorem
cc205..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x12
)
(proof)
Definition
TwoRamseyGraph_3_5_Church13
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Theorem
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b4828..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
x1
x0
(proof)
Definition
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
Theorem
b9fc1..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x0
)
(proof)
Theorem
00a87..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x0
)
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x1
)
(proof)
Definition
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
Theorem
4d61d..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x0
)
(proof)
Theorem
9e139..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x0
)
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x1
)
(proof)
Definition
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
Theorem
ab4f5..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x0
)
(proof)
Theorem
23927..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x0
)
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x1
)
(proof)
Definition
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
Theorem
074b4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x0
)
(proof)
Theorem
c0039..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x0
)
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x1
)
(proof)
Definition
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
Theorem
470a8..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x0
)
(proof)
Theorem
87eb0..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x0
)
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x1
)
(proof)
Definition
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
Theorem
0dab4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x0
)
(proof)
Theorem
696fa..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x0
)
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x1
)
(proof)