Search for blocks/addresses/...
Proofgold Asset
asset id
50585f24ae36b31b0fcbbe37c53b64952425f475ed882ba3e4cd9042f3a002c4
asset hash
9638e511fd5c93a796031ddf15a4321a44b443023722b9f39827c37ea8658424
bday / block
4970
tx
a3ed2..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
SNo
SNo
:
ι
→
ο
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_ordinal_InL
add_SNo_ordinal_InL
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
∀ x2 .
x2
∈
x0
⟶
add_SNo
x2
x1
∈
add_SNo
x0
x1
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Theorem
add_SNo_ordinal_InR
add_SNo_ordinal_InR
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
∀ x2 .
x2
∈
x1
⟶
add_SNo
x0
x2
∈
add_SNo
x0
x1
(proof)
Param
omega
omega
:
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
add_SNo_ordinal_SR
add_SNo_ordinal_SR
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
add_SNo
x0
(
ordsucc
x1
)
=
ordsucc
(
add_SNo
x0
x1
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Theorem
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
(proof)
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Theorem
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
(proof)
Known
add_SNo_cancel_L
add_SNo_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x0
x2
⟶
x1
=
x2
Theorem
add_SNo_cancel_R
add_SNo_cancel_R
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x2
x1
⟶
x0
=
x2
(proof)
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNoS_
SNoS_
:
ι
→
ι
Known
SNoLev_ind2
SNoLev_ind2
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x1
x3
)
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x1
)
⟶
∀ x4 .
x4
∈
SNoS_
(
SNoLev
x2
)
⟶
x0
x3
x4
)
⟶
x0
x1
x2
)
⟶
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
x0
x1
x2
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Known
add_SNo_eq
add_SNo_eq
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
add_SNo
x0
x1
=
SNoCut
(
binunion
{
add_SNo
x3
x1
|x3 ∈
SNoL
x0
}
(
prim5
(
SNoL
x1
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x3
x1
|x3 ∈
SNoR
x0
}
(
prim5
(
SNoR
x1
)
(
add_SNo
x0
)
)
)
Param
SNoCutP
SNoCutP
:
ι
→
ι
→
ο
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
TransSet_In_ordsucc_Subq
TransSet_In_ordsucc_Subq
:
∀ x0 x1 .
TransSet
x1
⟶
x0
∈
ordsucc
x1
⟶
x0
⊆
x1
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Known
ordinal_famunion
ordinal_famunion
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
famunion
x0
x1
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
SNoR_SNoS_
SNoR_SNoS_
:
∀ x0 .
SNoR
x0
⊆
SNoS_
(
SNoLev
x0
)
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoL_SNoS_
SNoL_SNoS_
:
∀ x0 .
SNoL
x0
⊆
SNoS_
(
SNoLev
x0
)
Known
add_SNo_SNoCutP
add_SNo_SNoCutP
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoCutP
(
binunion
{
add_SNo
x2
x1
|x2 ∈
SNoL
x0
}
(
prim5
(
SNoL
x1
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x2
x1
|x2 ∈
SNoR
x0
}
(
prim5
(
SNoR
x1
)
(
add_SNo
x0
)
)
)
Known
add_SNo_ordinal_ordinal
add_SNo_ordinal_ordinal
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
ordinal
(
add_SNo
x0
x1
)
Theorem
add_SNo_Lev_bd
add_SNo_Lev_bd
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
(
add_SNo
x0
x1
)
⊆
add_SNo
(
SNoLev
x0
)
(
SNoLev
x1
)
(proof)
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Theorem
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
(proof)
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Definition
int_alt1
int
:=
binunion
omega
(
prim5
omega
minus_CSNo
)
Param
ReplSep2
ReplSep2
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
div_CSNo
div_CSNo
:
ι
→
ι
→
ι
Definition
cab0d..
rational
:=
ReplSep2
int_alt1
(
λ x0 .
omega
)
(
λ x0 x1 .
x1
=
0
⟶
∀ x2 : ο .
x2
)
div_CSNo
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Definition
Sum
Sum
:=
λ x0 x1 .
λ x2 :
ι → ι
.
nat_primrec
0
(
λ x3 x4 .
If_i
(
x3
∈
x0
)
0
(
add_CSNo
(
x2
x3
)
x4
)
)
(
ordsucc
x1
)
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Definition
Prod
Prod
:=
λ x0 x1 .
λ x2 :
ι → ι
.
nat_primrec
1
(
λ x3 x4 .
If_i
(
x3
∈
x0
)
1
(
mul_CSNo
(
x2
x3
)
x4
)
)
(
ordsucc
x1
)