Search for blocks/addresses/...
Proofgold Asset
asset id
978677fb4eabeb9c2faa9ccd2f4cf485b2f841f1836466ef629b588f07144ea3
asset hash
1a34835bc1102714629c4f242e14be3ae5e841c7351a71b1bafe36890f14a9b5
bday / block
2843
tx
0befc..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
17e9f..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
d2155..
x0
x3
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
9f6be..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
4a7ef..
=
x0
Theorem
7492d..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
x0
=
17e9f..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
b56ab..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
x4
x0
(
f482f..
(
17e9f..
x0
x1
x2
x3
)
4a7ef..
)
⟶
x4
(
f482f..
(
17e9f..
x0
x1
x2
x3
)
4a7ef..
)
x0
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
8a328..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
691ba..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
x0
=
17e9f..
x1
x2
x3
x4
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
x2
x5
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
155f9..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x1
x4
=
decode_c
(
f482f..
(
17e9f..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Known
142e6..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
bcc00..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
x0
=
17e9f..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
b24dc..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
f482f..
(
f482f..
(
17e9f..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
62a6b..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
f28c1..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
x0
=
17e9f..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Theorem
e1cfe..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x4
x5
=
2b2e3..
(
f482f..
(
17e9f..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
4c1a8..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
17e9f..
x0
x2
x4
x6
=
17e9f..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x6
x8
x9
=
x7
x8
x9
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
44ab7..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x0
)
⟶
iff
(
x1
x7
)
(
x2
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x3
x7
=
x4
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x5
x7
x8
)
(
x6
x7
x8
)
)
⟶
17e9f..
x0
x1
x3
x5
=
17e9f..
x0
x2
x4
x6
(proof)
Definition
9a300..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
x1
(
17e9f..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
8a21b..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
9a300..
(
17e9f..
x0
x1
x2
x3
)
(proof)
Theorem
be260..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
9a300..
(
17e9f..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x4
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
dcb35..
:
∀ x0 .
9a300..
x0
⟶
x0
=
17e9f..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
1fdeb..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
9565e..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
1fdeb..
(
17e9f..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
c1732..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
d83ec..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
c1732..
(
17e9f..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
c7ccc..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
1216a..
x0
x3
)
)
)
)
Theorem
cec89..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
c7ccc..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
36fd9..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
f482f..
(
c7ccc..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
47b2a..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
c7ccc..
x1
x2
x3
x4
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
x2
x5
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
620b0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x1
x4
=
decode_c
(
f482f..
(
c7ccc..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
9867d..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
c7ccc..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
1da29..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
f482f..
(
f482f..
(
c7ccc..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
e5fea..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
c7ccc..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x4
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
880ae..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x3
x4
=
decode_p
(
f482f..
(
c7ccc..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(proof)
Theorem
9757d..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 :
ι → ο
.
c7ccc..
x0
x2
x4
x6
=
c7ccc..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
=
x7
x8
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
f4cca..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 :
ι → ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x0
)
⟶
iff
(
x1
x7
)
(
x2
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x3
x7
=
x4
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
iff
(
x5
x7
)
(
x6
x7
)
)
⟶
c7ccc..
x0
x1
x3
x5
=
c7ccc..
x0
x2
x4
x6
(proof)
Definition
49755..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 :
ι → ο
.
x1
(
c7ccc..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
aa00f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 :
ι → ο
.
49755..
(
c7ccc..
x0
x1
x2
x3
)
(proof)
Theorem
d05db..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
49755..
(
c7ccc..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x4
)
x0
(proof)
Theorem
12038..
:
∀ x0 .
49755..
x0
⟶
x0
=
c7ccc..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
13026..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
f43cf..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
13026..
(
c7ccc..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
2fe05..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
8aa5c..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
2fe05..
(
c7ccc..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
eb2d9..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
x3
)
)
)
Theorem
17a28..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
x0
=
eb2d9..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4b77a..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x0
=
f482f..
(
eb2d9..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
9fde6..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
x0
=
eb2d9..
x1
x2
x3
x4
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
x2
x5
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
0041c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x1
x4
=
decode_c
(
f482f..
(
eb2d9..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
ae098..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
x0
=
eb2d9..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
923f0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
prim1
x4
x0
⟶
x2
x4
=
f482f..
(
f482f..
(
eb2d9..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
dc4aa..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
x0
=
eb2d9..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
dc48a..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
=
f482f..
(
eb2d9..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
7b502..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 .
eb2d9..
x0
x2
x4
x6
=
eb2d9..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
x6
=
x7
)
(proof)
Theorem
f600a..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
iff
(
x1
x6
)
(
x2
x6
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x6
=
x4
x6
)
⟶
eb2d9..
x0
x1
x3
x5
=
eb2d9..
x0
x2
x4
x5
(proof)
Definition
b67a0..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
x1
(
eb2d9..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
6b633..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 .
prim1
x3
x0
⟶
b67a0..
(
eb2d9..
x0
x1
x2
x3
)
(proof)
Theorem
c0e69..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
b67a0..
(
eb2d9..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x4
)
x0
(proof)
Theorem
5c7ca..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
b67a0..
(
eb2d9..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
20b3f..
:
∀ x0 .
b67a0..
x0
⟶
x0
=
eb2d9..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
26d87..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
9353f..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
26d87..
(
eb2d9..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
6c446..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
2b25e..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 .
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x3
x7
=
x6
x7
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
6c446..
(
eb2d9..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
30bff..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
1216a..
x0
x3
)
)
)
)
Theorem
6d1ab..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
30bff..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
a089c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
f482f..
(
30bff..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
8da93..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
30bff..
x1
x2
x3
x4
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
x2
x5
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
66eb4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x1
x4
=
decode_c
(
f482f..
(
30bff..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
b818c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
30bff..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
bd057..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
30bff..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
7b60c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
30bff..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x4
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
3fc2d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x3
x4
=
decode_p
(
f482f..
(
30bff..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(proof)
Theorem
eabbd..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι → ο
.
30bff..
x0
x2
x4
x6
=
30bff..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
=
x7
x8
)
(proof)
Theorem
b69b2..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x0
)
⟶
iff
(
x1
x7
)
(
x2
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x3
x7
x8
)
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
iff
(
x5
x7
)
(
x6
x7
)
)
⟶
30bff..
x0
x1
x3
x5
=
30bff..
x0
x2
x4
x6
(proof)
Definition
014dd..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x1
(
30bff..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
b0689..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
014dd..
(
30bff..
x0
x1
x2
x3
)
(proof)
Theorem
2f936..
:
∀ x0 .
014dd..
x0
⟶
x0
=
30bff..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
7811e..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
51deb..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
7811e..
(
30bff..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
f9779..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
4755f..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
f9779..
(
30bff..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
d8d01..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
x3
)
)
)
Theorem
61567..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
d8d01..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
0d3cc..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
f482f..
(
d8d01..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
89e73..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
d8d01..
x1
x2
x3
x4
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
x2
x5
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
e80db..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x1
x4
=
decode_c
(
f482f..
(
d8d01..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
119c2..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
d8d01..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
fd378..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
d8d01..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
78a8c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
d8d01..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
76505..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
=
f482f..
(
d8d01..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
2a51d..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 .
d8d01..
x0
x2
x4
x6
=
d8d01..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
x6
=
x7
)
(proof)
Theorem
b3c31..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
iff
(
x1
x6
)
(
x2
x6
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
x3
x6
x7
)
(
x4
x6
x7
)
)
⟶
d8d01..
x0
x1
x3
x5
=
d8d01..
x0
x2
x4
x5
(proof)
Definition
f593b..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
d8d01..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
48a34..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
f593b..
(
d8d01..
x0
x1
x2
x3
)
(proof)
Theorem
5c3bc..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
f593b..
(
d8d01..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
b3e73..
:
∀ x0 .
f593b..
x0
⟶
x0
=
d8d01..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
df6a8..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
69516..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
df6a8..
(
d8d01..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
4cd9f..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
938bf..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
(
ι → ο
)
→ ο
.
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
4cd9f..
(
d8d01..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)