Search for blocks/addresses/...

Proofgold Asset

asset id
97e38aaeaf4a7b2b693037205856aa8b986f2b2431acdb0accfa6480fe1b44ef
asset hash
384015480bfa4175033ff37be395efcd4d21d91cc44465878b0d050290ff5042
bday / block
36397
tx
99b09..
preasset
doc published by PrCmT..
Known df_rtrcl__df_relexp__df_rtrclrec__df_shft__df_sgn__df_cj__df_re__df_im__df_sqrt__df_abs__df_limsup__df_clim__df_rlim__df_o1__df_lo1__df_sum__df_prod__df_risefac : ∀ x0 : ο . (wceq crtcl (cmpt (λ x1 . cvv) (λ x1 . cint (cab (λ x2 . w3a (wss (cres cid (cun (cdm (cv x1)) (crn (cv x1)))) (cv x2)) (wss (cv x1) (cv x2)) (wss (ccom (cv x2) (cv x2)) (cv x2))))))wceq crelexp (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cn0) (λ x1 x2 . cif (wceq (cv x2) cc0) (cres cid (cun (cdm (cv x1)) (crn (cv x1)))) (cfv (cv x2) (cseq (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . ccom (cv x3) (cv x1))) (cmpt (λ x3 . cvv) (λ x3 . cv x1)) c1))))wceq crtrcl (cmpt (λ x1 . cvv) (λ x1 . ciun (λ x2 . cn0) (λ x2 . co (cv x1) (cv x2) crelexp)))wceq cshi (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cc) (λ x1 x2 . copab (λ x3 x4 . wa (wcel (cv x3) cc) (wbr (co (cv x3) (cv x2) cmin) (cv x4) (cv x1)))))wceq csgn (cmpt (λ x1 . cxr) (λ x1 . cif (wceq (cv x1) cc0) cc0 (cif (wbr (cv x1) cc0 clt) (cneg c1) c1)))wceq ccj (cmpt (λ x1 . cc) (λ x1 . crio (λ x2 . wa (wcel (co (cv x1) (cv x2) caddc) cr) (wcel (co ci (co (cv x1) (cv x2) cmin) cmul) cr)) (λ x2 . cc)))wceq cre (cmpt (λ x1 . cc) (λ x1 . co (co (cv x1) (cfv (cv x1) ccj) caddc) c2 cdiv))wceq cim (cmpt (λ x1 . cc) (λ x1 . cfv (co (cv x1) ci cdiv) cre))wceq csqrt (cmpt (λ x1 . cc) (λ x1 . crio (λ x2 . w3a (wceq (co (cv x2) c2 cexp) (cv x1)) (wbr cc0 (cfv (cv x2) cre) cle) (wnel (co ci (cv x2) cmul) crp)) (λ x2 . cc)))wceq cabs (cmpt (λ x1 . cc) (λ x1 . cfv (co (cv x1) (cfv (cv x1) ccj) cmul) csqrt))wceq clsp (cmpt (λ x1 . cvv) (λ x1 . cinf (crn (cmpt (λ x2 . cr) (λ x2 . csup (cin (cima (cv x1) (co (cv x2) cpnf cico)) cxr) cxr clt))) cxr clt))wceq cli (copab (λ x1 x2 . wa (wcel (cv x2) cc) (wral (λ x3 . wrex (λ x4 . wral (λ x5 . wa (wcel (cfv (cv x5) (cv x1)) cc) (wbr (cfv (co (cfv (cv x5) (cv x1)) (cv x2) cmin) cabs) (cv x3) clt)) (λ x5 . cfv (cv x4) cuz)) (λ x4 . cz)) (λ x3 . crp))))wceq crli (copab (λ x1 x2 . wa (wa (wcel (cv x1) (co cc cr cpm)) (wcel (cv x2) cc)) (wral (λ x3 . wrex (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) clewbr (cfv (co (cfv (cv x5) (cv x1)) (cv x2) cmin) cabs) (cv x3) clt) (λ x5 . cdm (cv x1))) (λ x4 . cr)) (λ x3 . crp))))wceq co1 (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cfv (cv x4) (cv x1)) cabs) (cv x3) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cc cr cpm))wceq clo1 (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cv x4) (cv x1)) (cv x3) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cr cr cpm))(∀ x1 x2 : ι → ι → ο . ∀ x3 . wceq (csu (x1 x3) x2) (cio (λ x4 . wo (wrex (λ x5 . wa (wss (x1 x3) (cfv (cv x5) cuz)) (wbr (cseq caddc (cmpt (λ x6 . cz) (λ x6 . cif (wcel (cv x6) (x1 x3)) (csb (cv x6) x2) cc0)) (cv x5)) (cv x4) cli)) (λ x5 . cz)) (wrex (λ x5 . wex (λ x6 . wa (wf1o (co c1 (cv x5) cfz) (x1 x3) (cv x6)) (wceq (cv x4) (cfv (cv x5) (cseq caddc (cmpt (λ x7 . cn) (λ x7 . csb (cfv (cv x7) (cv x6)) x2)) c1))))) (λ x5 . cn)))))(∀ x1 x2 : ι → ι → ο . ∀ x3 . wceq (cprod x1 x2) (cio (λ x4 . wo (wrex (λ x5 . w3a (wss (x1 x3) (cfv (cv x5) cuz)) (wrex (λ x6 . wex (λ x7 . wa (wne (cv x7) cc0) (wbr (cseq cmul (cmpt (λ x8 . cz) (λ x8 . cif (wcel (cv x8) (x1 x8)) (x2 x8) c1)) (cv x6)) (cv x7) cli))) (λ x6 . cfv (cv x5) cuz)) (wbr (cseq cmul (cmpt (λ x6 . cz) (λ x6 . cif (wcel (cv x6) (x1 x6)) (x2 x6) c1)) (cv x5)) (cv x4) cli)) (λ x5 . cz)) (wrex (λ x5 . wex (λ x6 . wa (wf1o (co c1 (cv x5) cfz) (x1 x3) (cv x6)) (wceq (cv x4) (cfv (cv x5) (cseq cmul (cmpt (λ x7 . cn) (λ x7 . csb (cfv (cv x7) (cv x6)) x2)) c1))))) (λ x5 . cn)))))wceq crisefac (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cn0) (λ x1 x2 . cprod (λ x3 . co cc0 (co (cv x2) c1 cmin) cfz) (λ x3 . co (cv x1) (cv x3) caddc)))x0)x0
Theorem df_rtrcl : wceq crtcl (cmpt (λ x0 . cvv) (λ x0 . cint (cab (λ x1 . w3a (wss (cres cid (cun (cdm (cv x0)) (crn (cv x0)))) (cv x1)) (wss (cv x0) (cv x1)) (wss (ccom (cv x1) (cv x1)) (cv x1)))))) (proof)
Theorem df_relexp : wceq crelexp (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cn0) (λ x0 x1 . cif (wceq (cv x1) cc0) (cres cid (cun (cdm (cv x0)) (crn (cv x0)))) (cfv (cv x1) (cseq (cmpt2 (λ x2 x3 . cvv) (λ x2 x3 . cvv) (λ x2 x3 . ccom (cv x2) (cv x0))) (cmpt (λ x2 . cvv) (λ x2 . cv x0)) c1)))) (proof)
Theorem df_rtrclrec : wceq crtrcl (cmpt (λ x0 . cvv) (λ x0 . ciun (λ x1 . cn0) (λ x1 . co (cv x0) (cv x1) crelexp))) (proof)
Theorem df_shft : wceq cshi (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cc) (λ x0 x1 . copab (λ x2 x3 . wa (wcel (cv x2) cc) (wbr (co (cv x2) (cv x1) cmin) (cv x3) (cv x0))))) (proof)
Theorem df_sgn : wceq csgn (cmpt (λ x0 . cxr) (λ x0 . cif (wceq (cv x0) cc0) cc0 (cif (wbr (cv x0) cc0 clt) (cneg c1) c1))) (proof)
Theorem df_cj : wceq ccj (cmpt (λ x0 . cc) (λ x0 . crio (λ x1 . wa (wcel (co (cv x0) (cv x1) caddc) cr) (wcel (co ci (co (cv x0) (cv x1) cmin) cmul) cr)) (λ x1 . cc))) (proof)
Theorem df_re : wceq cre (cmpt (λ x0 . cc) (λ x0 . co (co (cv x0) (cfv (cv x0) ccj) caddc) c2 cdiv)) (proof)
Theorem df_im : wceq cim (cmpt (λ x0 . cc) (λ x0 . cfv (co (cv x0) ci cdiv) cre)) (proof)
Theorem df_sqrt : wceq csqrt (cmpt (λ x0 . cc) (λ x0 . crio (λ x1 . w3a (wceq (co (cv x1) c2 cexp) (cv x0)) (wbr cc0 (cfv (cv x1) cre) cle) (wnel (co ci (cv x1) cmul) crp)) (λ x1 . cc))) (proof)
Theorem df_abs : wceq cabs (cmpt (λ x0 . cc) (λ x0 . cfv (co (cv x0) (cfv (cv x0) ccj) cmul) csqrt)) (proof)
Theorem df_limsup : wceq clsp (cmpt (λ x0 . cvv) (λ x0 . cinf (crn (cmpt (λ x1 . cr) (λ x1 . csup (cin (cima (cv x0) (co (cv x1) cpnf cico)) cxr) cxr clt))) cxr clt)) (proof)
Theorem df_clim : wceq cli (copab (λ x0 x1 . wa (wcel (cv x1) cc) (wral (λ x2 . wrex (λ x3 . wral (λ x4 . wa (wcel (cfv (cv x4) (cv x0)) cc) (wbr (cfv (co (cfv (cv x4) (cv x0)) (cv x1) cmin) cabs) (cv x2) clt)) (λ x4 . cfv (cv x3) cuz)) (λ x3 . cz)) (λ x2 . crp)))) (proof)
Theorem df_rlim : wceq crli (copab (λ x0 x1 . wa (wa (wcel (cv x0) (co cc cr cpm)) (wcel (cv x1) cc)) (wral (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) clewbr (cfv (co (cfv (cv x4) (cv x0)) (cv x1) cmin) cabs) (cv x2) clt) (λ x4 . cdm (cv x0))) (λ x3 . cr)) (λ x2 . crp)))) (proof)
Theorem df_o1 : wceq co1 (crab (λ x0 . wrex (λ x1 . wrex (λ x2 . wral (λ x3 . wbr (cfv (cfv (cv x3) (cv x0)) cabs) (cv x2) cle) (λ x3 . cin (cdm (cv x0)) (co (cv x1) cpnf cico))) (λ x2 . cr)) (λ x1 . cr)) (λ x0 . co cc cr cpm)) (proof)
Theorem df_lo1 : wceq clo1 (crab (λ x0 . wrex (λ x1 . wrex (λ x2 . wral (λ x3 . wbr (cfv (cv x3) (cv x0)) (cv x2) cle) (λ x3 . cin (cdm (cv x0)) (co (cv x1) cpnf cico))) (λ x2 . cr)) (λ x1 . cr)) (λ x0 . co cr cr cpm)) (proof)
Theorem df_sum : ∀ x0 x1 : ι → ι → ο . ∀ x2 . wceq (csu (x0 x2) x1) (cio (λ x3 . wo (wrex (λ x4 . wa (wss (x0 x2) (cfv (cv x4) cuz)) (wbr (cseq caddc (cmpt (λ x5 . cz) (λ x5 . cif (wcel (cv x5) (x0 x2)) (csb (cv x5) x1) cc0)) (cv x4)) (cv x3) cli)) (λ x4 . cz)) (wrex (λ x4 . wex (λ x5 . wa (wf1o (co c1 (cv x4) cfz) (x0 x2) (cv x5)) (wceq (cv x3) (cfv (cv x4) (cseq caddc (cmpt (λ x6 . cn) (λ x6 . csb (cfv (cv x6) (cv x5)) x1)) c1))))) (λ x4 . cn)))) (proof)
Theorem df_prod : ∀ x0 x1 : ι → ι → ο . ∀ x2 . wceq (cprod x0 x1) (cio (λ x3 . wo (wrex (λ x4 . w3a (wss (x0 x2) (cfv (cv x4) cuz)) (wrex (λ x5 . wex (λ x6 . wa (wne (cv x6) cc0) (wbr (cseq cmul (cmpt (λ x7 . cz) (λ x7 . cif (wcel (cv x7) (x0 x7)) (x1 x7) c1)) (cv x5)) (cv x6) cli))) (λ x5 . cfv (cv x4) cuz)) (wbr (cseq cmul (cmpt (λ x5 . cz) (λ x5 . cif (wcel (cv x5) (x0 x5)) (x1 x5) c1)) (cv x4)) (cv x3) cli)) (λ x4 . cz)) (wrex (λ x4 . wex (λ x5 . wa (wf1o (co c1 (cv x4) cfz) (x0 x2) (cv x5)) (wceq (cv x3) (cfv (cv x4) (cseq cmul (cmpt (λ x6 . cn) (λ x6 . csb (cfv (cv x6) (cv x5)) x1)) c1))))) (λ x4 . cn)))) (proof)
Theorem df_risefac : wceq crisefac (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . cn0) (λ x0 x1 . cprod (λ x2 . co cc0 (co (cv x1) c1 cmin) cfz) (λ x2 . co (cv x0) (cv x2) caddc))) (proof)